首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
丛书文集   2篇
综合类   8篇
  2018年   1篇
  2015年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 125 毫秒
1
1.
细菌纤维素作为新型生物材料,已成为生物材料研究热点,但产量低限制了其进一步应用。选择合适的优化策略是实现产量提高的一个重要方法。本文在正交和均匀设计实验传统建模方法的基础上,运用人工神经网络模型结合遗传算法优化汉氏葡糖醋杆菌(Komagataeibacter hansenii HDM1-3)产细菌纤维素发酵培养基。结果表明,最佳培养基配方为葡萄糖3.98%、牛肉膏0.34%、酵母膏0.19%、磷酸氢二钠0.22%、磷酸氢二钾0.46%、乙醇2.23%。在此配方下,细菌纤维素产量最高达到2.87 g·L~(-1),与优化前培养基的产量相比提高了1.18倍。本研究优化了细菌纤维素发酵培养基参数,为细菌纤维素高产发酵及工业化推广应用提供了依据。  相似文献   
2.
植物吸收铁营养元素的分子机制研究进展   总被引:7,自引:0,他引:7  
铁是植物生长必需的矿质元素,高等植物通过铁素吸收的机制I、机制II和可能的机制III--吞噬系统来适应缺铁胁迫.本文对植物吸收铁营养元素的分子机制及其相关基因的研究进展进行了综述.  相似文献   
3.
不同温度下微波烧结Fe-Cu-C的性能   总被引:5,自引:0,他引:5  
对微波烧结Fe-2Cu-0.6C粉末冶金材料进行探索性研究,研究不同烧结温度下微波烧结样品的性能和显微组织,并与相同温度下的常规烧结样品进行对比.研究结果表明:与常规烧结相比,微波烧结可得到较高的烧结密度以及较高的抗拉强度和伸长率,两者的洛氏硬度相当;微波烧结样品在1150℃时性能最佳,密度为7.20g/cm3,抗拉强度为413.90 MPa,洛氏硬度为HRB75;微波烧结样品具有良好的微观结构,即小的、近圆形且均匀分布的孔隙结构,从而也有利于获得细小的晶粒和较高的致密度;微波烧结与常规烧结相比,样品具有更多片状和粒状珠光体,能显著改善其性能.  相似文献   
4.
高温稀土永磁合金Sm_2(Co,Cu,Fe,Zr)_(17)   总被引:1,自引:0,他引:1  
利用粉末冶金的方法研制了 3种成分为Sm (CobalFe0 .2 4Cu0 .0 8Zr0 .0 2 7) 7.0 ,Sm (CobalFe0 .2 7Cu0 .0 5Zr0 .0 2 7) 7.0 ,Sm(CobalFe0 .2 6Cu0 .0 5Zr0 .0 2 6) 7.0 的高温永磁合金 ,并对其磁性能、温度稳定性和显微结构进行了分析 .研究结果表明 :常温时 ,3种永磁合金都具有较高的磁性能 ,其中 ,合金样品Sm (CobalFe0 .2 7Cu0 .0 5Zr0 .0 2 7) 7.0 的内禀矫顽力 (2 16 5 .6kA·m- 1 )和磁能积 (2 12 .0kA·m- 3 )最大 ;2 0 0℃时 ,3种合金的磁性能降低 ,但仍具有较大值 ;增加Co和Fe的含量 ,可提高材料的剩磁 ,当Zr的含量较大时 ,合金的矫顽力较高 ;3种磁体的温度系数都较低 ,最高使用温度均在 40 0℃以上 ,大大高于一般商用磁体的使用温度 ;增加Sm ,Co ,Cu的含量和减少Fe的含量可以提高材料的温度稳定性 ;合金中含有Sm2 (Co,Fe) 1 7主相、Sm(Co,Cu) 5相、Zr的化合物等 ;Sm(Co,Cu) 5相、单质Zr、晶粒边界等钉扎畴壁 ,使合金具有较高的矫顽力 .  相似文献   
5.
采用熔体快淬+晶化处理方法制备宽度为4mm、厚度为30μm的(FeCo)73.5Cu1Nb3Si13.5B9纳米晶软磁合金,并用XRD和TEM对其微结构进行表征。研究结果表明:(FeCo)73.5Cu1Nb3Si13.5B9于600℃晶化处理15min后具有较高的饱和磁化强度(1、30T)和较小的矫顽力(4.61A/m);提高晶化温度至700℃,合金的软磁性能迅速降低,饱和磁化强度为1.02T,矫顽力增大至1.95kA/m:于600℃晶化处理5min时,合金主要由非晶构成,同时有少量α-Fe(Si)相;于600℃晶化处理15min后合金由α-Fe(Si)主相和少量残余非晶相构成,α-Fe(Si)相的晶粒粒径约为15nm;于700℃晶化处理15min后,合金由α-Fe(Si)相、残余非晶相和少量Fe3B相构成,α-Fe(Si)相的晶粒粒径约为27.9nm。Fe3B相的形成、α-Fe(Si)相晶粒粒径的长大和晶格常数的增大直接导致合金软磁性能下降。  相似文献   
6.
高温Sm(Co,Fe,Cu,Zr)z永磁体的设计原则   总被引:2,自引:0,他引:2  
为了提出制造具有较高的最高使用温度的高温Sm(Co,Fe,Cu,Zr)z永磁体的设计要求,根据最高使用温度公式中影响TMO的Hci,TR及β值,提出了高温Sm(Co,Fe,Cu,Zr)z永磁体的成分设计要求为∶Cu含量高,Fe含量低,Zr含量适当,z值小.用粉末冶金方法分别制造了4种成分不同的合金.其中Cu含量高、Fe含量低、Zr含量适当、z值小的C样品Sm(CobalFe0.1Cu0.08Zr0.03)7永磁体的室温内禀矫顽力Hci为1 830.8 kA/m,温度系数β(20~200 ℃)为-0.20%/℃,估算其使用温度能超过400 ℃;Fe含量高,Cu含量低,z值大的B样品Sm(CobalFe0.2Cu0.06Zr0.02)8.5永磁体的Hci为2 388 kA/m,β为-0.33%/℃(20~200 ℃),其tMO仅为270 ℃;而A,D样品的性能及使用温度介于B与C之间.实验结果表明,Cu含量高、Fe含量低、Zr含量适当、z值小是制造高温Sm(Co,Fe,Cu,Zr)z永磁体的必要条件.为制造高温Sm(Co,Fe,Cu,Zr)z永磁体提供了成分设计的参考.  相似文献   
7.
采用双合金法制备Nd-Dy-Sn-Fe-Nb-B永磁体,并对其磁性能、温度稳定性和显微组织进行了研究.研究结果表明∶Nd-Dy-Sn-Fe-Nb-B磁体的内禀矫顽力Hci随Dy2O3含量的增加而增大,当Dy2O3含量为2%时,磁体的Hci和(BH)max较高,添加2% Dy2O3和0.3% Sn时,磁体的Br和(BH)max降低,而Hci可由656.0 kA/m升高到1*!024.0 kA/m,同时磁体的温度稳定性加强,磁通不可逆损失降低;当测量温度从20 ℃增加到160 ℃时,hirr为-2.3%,温度系数α为0.014%/℃.  相似文献   
8.
聚丙烯腈基炭纤维的组织结构及力学性能   总被引:4,自引:0,他引:4  
在不同温度下对聚丙烯腈基炭纤维(PAN-CF)进行张力炭化处理并进行高温石墨化.研究结果表明:在炭化过程中,PAN-CF的拉伸强度在1400℃时达最大值,拉伸模量则随炭化温度的升高而增大;与炭化样品相比,PAN-CF石墨化后的拉伸强度减小,拉伸模量增大;随着炭化温度的升高,微晶c轴方向堆叠厚度Lc增大,层面间距d002减小; 炭化温度为1400℃时,PAN-CF在石墨化后,内部的炭颗粒排列得非常紧密,并且孔洞、裂纹、皮芯结构等缺陷很少;当炭化温度高于1400℃时,石墨化后PAN-CF内部有大量缺陷,使PAN-CF的拉伸强度大大降低.  相似文献   
9.
新的课程改革和素质教育的要求下,学校和教师越来越重视对学生实践能力的培养。而随着教师与学生将课本上有关的理论知识应用到实验中,往往会出现大大小小的问题。化学学科本身就是理论与实验相结合的学科,相比较其他类学科,它更加侧重培养学生们的动手实验能力和领悟总结能力。所以,在学校的化学实验过程中,它所涉及的方方面面都必须要引起老师和学生的注意。从而从基础实验中让学生了解相关的注意事项,树立正确的实验态度和形成良好的实验习惯。  相似文献   
10.
W-Cu触头材料的微波烧结   总被引:1,自引:0,他引:1  
采用微波烧结技术制备W-25Cu触头材料,并与常规烧结进行对比.结果表明:微波烧结升温速度快,周期短,能促进w-Cu材料的致密化:在适当条件下,微波烧结能获得相对密度达99.8%的w-Cu样品;微波烧结能改善W-Cu样品中两相分布的均匀性和w晶粒尺寸的一致性,但引起w晶粒的快速长大;Fe烧结助剂导致W-Cu材料显微组织均匀性变差,并引起晶粒进一步粗化;微波烧结技术能够应用于W-Cu材料的制备,在缩短生产周期、降低生产成本方面具有潜在优势.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号