首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
文章应用Bernstein多项式求解一类变分数阶微分方程,结合Bernstein多项式的一阶微分算子矩阵、分数阶微分算子矩阵,通过离散变量,将原方程转化为线性方程组,通过解该线性方程组,进而得到数值解。数值算例验证了该方法的高度可行性和准确性。  相似文献   

2.
为求解一类变分数阶非线性微积分方程,提出了一种求解该类方程数值解的方法.该方法主要利用移位的Jacobi多项式将方程中的函数逼近,再结合Captuo类型的变分数阶微积分定义,推导出移位Jacobi多项式的微积分算子矩阵,将最初的方程转化为矩阵相乘的形式,然后通过离散变量,将原方程转化为一系列非线性方程组.通过解该非线性方程组得到移位Jacobi多项式的系数,进而可得原方程的数值解.最后,通过数值算例的精确解和数值解的绝对误差验证了该方法的高精度性和有效性.  相似文献   

3.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性.  相似文献   

4.
小波方法求一类变系数分数阶微分方程数值解   总被引:1,自引:0,他引:1  
为了解决分数阶微分方程数值解的问题,采用Haar小波算子矩阵的方法,研究了一类变系数分数阶微分方程的数值解.将Haar小波与算子矩阵思想有效结合,得到了Haar小波的分数阶微分算子矩阵,并对分数阶微分方程的变系数进行恰当的离散.把变系数分数阶微分方程转化为线性代数方程组,使得计算更简便,同时证明上述算法的收敛性.最后给出数值算例验证了该方法的可行性和有效性.数值计算结果表明:随着取点数的增多,数值解与精确解的近似度越来越高.  相似文献   

5.
先利用Legendre小波的分数阶积分算子矩阵将非线性分数阶Volterra积分微分方程转化为非线性代数方程组, 再通过数值求解方程组得到原方程的数值解, 证明了误差边界值, 并用算例验证了该方法的有效性和精确性.  相似文献   

6.
针对求解分数阶微分方程数值解和所得结果误差大小问题.采用Haar小波分数阶积分算子矩阵方法,得到一类变系数分数阶微分方程数值解.利用所得算子矩阵将原分数阶微分方程转化为代数方程组,进而便于编程求解.讨论算法的误差分析,给出相应的误差估计式,并证明该算法是收敛的.结果表明:随着点数的增多,所得数值解与精确解的误差也越来越小.最后,数值算例验证了方法的有效性以及理论分析的正确性.  相似文献   

7.
为了求高阶变系数且带有弱奇异积分核Volterra-Fredholm积分微分方程的数值解,提出了Bernstein算子矩阵法.利用Bernstein多项式的定义及其性质给出任意阶弱奇异积分的近似求积公式,同时也给出Bernstein多项式的微分算子矩阵.通过化简所求方程及离散化简后的方程,可将原问题转换为求代数方程组的解.最后,通过收敛性分析说明该方法是收敛的,并用数值算例验证了方法的有效性.  相似文献   

8.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性.  相似文献   

9.
为了求分数阶变系数且带有弱奇异积分核Volterra-Fredholm积分微分方程的数值解,本文提出了Legendre多项式算子矩阵法,利用Legendre多项式的定义及其性质给出了分数阶微分算子矩阵,同时也给出了任意阶弱奇异积分的近似求积公式.通过简化所求分数阶积分微分方程,并离散化简后的方程,可将原问题转换为求代数方程组的解.收敛性分析证明了本文方法是收敛的,数值算例验证了该方法的有效性.  相似文献   

10.
为了求解变系数分数阶Fredholm微积分方程的数值解,运用Caputo分数阶导数及性质,得出了由Legendre多项式构造的任意分数阶微分算子Dα,再利用区间[0,1]上Legendre级数的逼近,将变系数的分数阶微积分方程用矩阵形式表示,采用配点法,得到相应的代数方程组,对原微积分方程的数值解进行了研究并给出了数值算例,验证了Legendre多项式方法的可行性和有效性。  相似文献   

11.
利用B样条小波函数数值求解非线性分数阶第2类Fredholm积分方程,将具有紧支集的线性半正交B样条尺度函数和小波函数一起应用于数值求解非线性分数阶第2类Fredholm积分方程中.这种方法将非线性分数阶Fredholm积分方程转化为非线性代数方程组,再通过数值求解方程组得到原方程的数值解, 证明了误差边界值,数值算例验证了本方法的有效性和准确性.  相似文献   

12.
推导第二类Chebyshev小波(SCW)分数阶算子矩阵,利用SCW算子矩阵方法求解了一类非线性分数阶Volterra积分-微分方程.此方法将分数阶积分-微分方程转化成非线性代数方程组求解,可以简化分数阶方程的求解,所得到的数值结果表明该方法是有效和精确的.  相似文献   

13.
利用已建立的CAS小波算子矩阵数值求解一类线性积分-微分方程组,通过CAS小波逼近理论将积分-微分方程组离散化为代数方程组,最后利用数值算例验证数值求解方法的有效性.  相似文献   

14.
计算一类函数分数阶积分及其Caputo分数阶微分的问题.采用Haar小波和算子矩阵相结合的方法,得到一种Haar小波分数阶积分算子矩阵,利用该算子矩阵,对给定函数做了有效的离散,充分结合Haar小波矩阵的正交性、稀疏性,将求分数阶微积分问题转化为算子矩阵的乘积,从而便于计算机求解.平稳信号和非平稳信号的数值算例验证了该方法的可行性和有效性.  相似文献   

15.
用Jordan标准型方法研究常系数齐次分数阶微分方程组的基本解矩阵, 得到了方程组的基本解系. 结果表明, 可以用待定系数法解常系数齐次分数阶微分方程组, 并且该结果蕴含常系数线性一阶微分方程组.  相似文献   

16.
针对一类非线性分数阶微分方程,采用Legendre小波法对非线性分数阶微分方程进行研究.结合BlockPulse函数给出Legendre小波的分数阶积分算子矩阵,利用Block Pulse函数的定义与Legendre小波积分算子矩阵的性质将非线性分数阶微分方程转换为非线性代数方程组,进而对其数值解和误差分析进行研究.结果表明:随着点数增多,数值解的精确度增加.数值算例验证了小波法的可行性和有效性.  相似文献   

17.
用变分迭代法解分数阶微分方程组   总被引:1,自引:0,他引:1  
用变分迭代法求解一类分数阶微分方程组,并改进了校正函数.数值结果表明,运用变分迭代法求解分数阶微分方程组的近似解有效且准确.  相似文献   

18.
推导并利用第二类Chebyshev小波的分数阶积分算子矩阵,给出了求解一类分数阶偏方程的数值方法,并证明了二元函数第二类Chebyshev小波展式的收敛性。研究结果表明,基于第二类Chebyshev小波算子矩阵的方法可将分数阶阶偏微分方程转化成Sylvester方程求解,减少方程的计算量。数值算例表明,随着参数m’的增大,数值解与精确解可以很好地吻合,证明了基于第二类Chebyshev小波算子矩阵方法数值求解分数阶偏微分方程的有效性和精确性。  相似文献   

19.
为求解R-L定义下的分数阶非线性微分方程近似解析解,将Adomian多项式、Padé逼近法与R-L微分变换法相结合,提出改进的广义微分变换法。利用Adomian多项式代替方程中的非线性部分,对方程进行广义微分变换法求出其级数解,运用Pade法对其级数解进行逼近。改进的微分变换法不仅计算简单,具有较小的计算量,而且扩大了级数解得收敛范围,具有较高的精度。最后给出数值算例,验证了算法的有效性,为计算R-L分数阶非线性微分方程提出新的计算格式。  相似文献   

20.
研究一类带有p-Laplace算子的Caputo分数阶微分方程反周期边值问题解的存在性.首先给出了所研究的分数阶边值问题的Green函数,并将研究Caputo分数阶p-Laplace微分边值问题解的存在性问题转化为研究一个非线性算子的不动点问题,然后利用Banach压缩映像原理和Schauder不动点定理得到边值问题解的存在性,最后,通过一个例子验证了本文的主要结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号