首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
采用爆炸喷涂技术制备了碳化钨涂层,利用HT-1000高温摩擦磨损试验机研究了碳化钨涂层高温下摩擦磨损性能,通过扫描电子显微镜和X射线衍射分析了涂层磨损表面形貌、元素分布和相结构.结果表明:碳化钨涂层由雪花片状颗粒堆叠而成,如山地状,结合紧密.定温条件下,摩擦因数随着试验温度升高而减小,试验温度为550℃时,摩擦因数最小;磨损量随着温度升高而增大,550℃时,磨损量由于配副材料的转移出现了负增加.温度低于350℃时,磨损表面具有撕裂、轻微黏着和磨粒磨损痕迹;在550℃时,磨损表面发生了剥落、严重黏着和氧化磨损.连续升温条件下,温度低于300℃时,摩擦因数较小,在350~550℃范围内,摩擦因数波动较大;磨损表面以剥层、黏着和氧化磨损为主.  相似文献   

2.
通过摩擦磨损、高温硬度及相应的分析试验研究了典型身管用钢32Cr2MoVA、30SiMn2MoVA在室温、200、400以及600℃下的摩擦磨损行为与规律.结果表明:两种材料的摩擦系数在各个温度区间内的区别不大,主要受摩擦氧化物产生与否影响.32Cr2MoVA的磨损率随着温度的提高先降低再提高之后又下降,30SiMn2MoVA的磨损率随着温度的上升而先降低,然后逐渐升高,600℃达到最高.温度、身管钢在高温下的硬度和磨盘材料与滑动销的高温硬度差(Hd--Hp)共同影响磨损表面氧化物层的最终形态.室温至200℃时,身管钢磨损行为主要受表面氧化物层的影响.室温下两种身管钢磨损机理均为黏着磨损及磨粒磨损,200℃时均为氧化轻微磨损.环境温度达到400℃以上时,身管钢以及磨盘材料的基体硬度开始影响磨损行为.400℃时两种身管钢磨损机理均为氧化严重磨损.600℃时,32Cr2MoVA的Hd--Hp减小,磨损表面出现了厚度很大、致密的氧化物层,磨损机理为氧化轻微磨损;而30SiMn2MoVA的Hd--Hp显著增大,试样发生了明显的塑性挤出,为塑性挤出磨损.  相似文献   

3.
采用自制高温摩擦试验机模拟实际热冲压工艺条件下22MnB5裸板的高温摩擦过程,分析初始摩擦温度、滑动速度和法向载荷对其摩擦行为的影响.结果表明:转移过程中试样表面形成氧化层,摩擦时氧化层起到保护和润滑作用,初始摩擦温度对裸板摩擦系数的影响不大;在较低的摩擦速度下,试样表面的氧化物形成厚度不均匀的小堆积块,试样表面凹凸不平并且无法良好支撑摩擦界面,摩擦系数增大;法向载荷较大时,试样表面氧化物被大量剥落,金属基体暴露,摩擦系数增大.  相似文献   

4.
为了探讨离合器摩擦副材料在高温下的摩擦磨损机制,采用30CrSiMoVM钢作为与铜基粉末冶金摩擦片配对使用的对偶钢片,在MMU-10G高温端面摩擦磨损试验机上,研究30CrSiMoVM钢和摩擦片组成的摩擦副在室温到600℃之间的摩擦磨损性能。研究结果表明:随着温度升高,材料的强度逐渐降低,摩擦界面氧化膜不断形成与脱落,使摩擦副摩擦因数和磨损量总体趋势逐渐增大。在温度为300~500℃时,摩擦副摩擦因数和磨损量均平稳增大,表明摩擦副材料在此温度段摩擦磨损性能较稳定,磨损机制表现为磨粒磨损、氧化磨损和疲劳磨损;在600℃时,摩擦副材料表层软化,摩擦片摩擦因数和磨损量急剧增大,对偶钢片因表层黏着磨损严重,相对磨损量较小,磨损机制表现为黏着磨损、氧化磨损和疲劳磨损。  相似文献   

5.
为了改善聚合物的高温摩擦学性能,从仿生学设计角度出发,将聚α烯烃(PAO)润滑油加入聚合物获得含油聚合物,并将含油聚合物填充至叠层沟槽表面,制备了含油叠层复合材料,并利用销盘摩擦试验机研究了不同温度下该材料的摩擦学性能。摩擦试验结果表明:随着试验温度升高,无油叠层复合材料的摩擦因数显著增大,并在150℃时发生润滑失效;含油叠层复合材料在25~150℃范围内具有极低的摩擦因数,但在200℃时平均摩擦因数增大到0.18。采用扫描电子显微镜进行磨损表面形貌分析,发现在高温摩擦时,无油叠层复合材料的金属表面为严重的磨粒磨损,聚合物表面为烧蚀磨损;含油叠层复合材料的金属表面为轻微的擦伤,聚合物表面为塑性流动。分析表明,含油聚合物的多孔结构中储存着润滑油,在温度激励下润滑油发生迁移运动,在热驱动下润滑油向摩擦表面渗出并能形成稳定的润滑油膜,从而改善了叠层复合材料的高温润滑寿命。  相似文献   

6.
基于修正的Archard磨损模型,利用DEFORM-2D有限元软件分析了镍基耐蚀合金(Hastelloy G3)管材热挤压成形时挤压工艺参数对模具磨损的影响规律. 结果表明,挤压模具的磨损主要集中在锥模出口处. 模具最大磨损深度随着挤压速度、坯料预热温度的升高而降低,随摩擦因数的增大而升高. 模具表面磨损深度随着模角的增大而升高. 最佳热挤压工艺参数是:挤压速度200mm·s-1,坯料预热温度1180℃,摩擦因数0.05,界面换热系数5N·mm-1·s-1·℃-1. 此时,模具最大磨损深度为0.0515mm,模具可重复使用20次.  相似文献   

7.
位移幅值对Inconel600合金微动磨损性能和机制的影响   总被引:1,自引:0,他引:1  
采用高精度微动磨损试验机SRVⅣ研究蒸汽发生器传热管材料Inconel600合金在不同位移幅值下的微动磨损行为,分析了位移幅值对摩擦因数和磨损体积的影响.采用光学显微镜和扫描电子显微镜观察磨损表面和截面的形貌,并用透射电子显微镜对摩擦学转变组织进行观察.结果表明:随位移幅值的增加,摩擦因数和磨损体积逐渐增大,材料的微动行为先后经历以黏着为主的部分滑移区以及滑动为主的完全滑移区;磨损机制也由黏着磨损逐步转变为氧化磨损和剥层磨损的共同作用;微裂纹出现在黏着区域和滑动区域的交界处以及滑动区域内;黏着区氧分布密度和磨痕外基体的相一致,氧化主要发生滑动区域;磨痕亚表层的组织发生了严重的塑性变形,产生纳米化现象,摩擦学转变组织的晶粒尺寸约100 nm,远小于原始组织的15~30μm.  相似文献   

8.
铝合金热冲压成形质量影响因素   总被引:2,自引:0,他引:2  
建立铝合金热冲压成形的有限元模型,研究坯料初始温度、冲压速度、压边力及摩擦因数对板料成形质量的影响,通过铝合金热冲压实验验证有限元模拟的可靠性.研究结果表明:400~500℃是可行的坯料成形初始温度范围;冲压速度增大,成形质量较差,超过一定限度时,冲压速度的增大对板料成形质量影响较小;压边力超过15kN时,铝合金板料可能产生破裂失效;良好的润滑是铝合金热冲压成形的必要条件,摩擦因数小于0.15时,板料不会被拉裂.  相似文献   

9.
文章以聚甲基丙烯酸甲酯(PMMA)圆盘和氮化硅陶瓷球(Si_3N_4)为摩擦副,利用旋转式高温真空摩擦磨损试验机测试温度和载荷对PMMA摩擦磨损特性的影响,并使用激光共聚焦3D显微镜对样品划痕进行观察分析。实验结果表明:PMMA的摩擦系数随温度升高呈现先略微降低然后显著增大的变化趋势,临界温度点约为90℃,并且随载荷的增加临界点温度略有减小;90℃以下时摩擦系数随时间变化较为平稳,90℃以上时表现出类似"黏滑"的振动现象。综合分析摩擦系数曲线振动幅度、磨损微观图像和划痕堆积形式,得出PMMA在70℃以下的磨损机理主要为磨粒磨损,90℃以上转变为以黏着磨损为主。  相似文献   

10.
在面向高端制造业中,碳氮化钛(TiCN)基金属陶瓷刀具以其优异的切削表面质量,自身红硬性、耐磨性和抗氧化性等性能优异广受关注。针对TiCN基金属陶瓷在实际加工工程中的情况,研究材料在不同温度(600、700、800℃)条件下的高温摩擦磨损性能。采用X线衍射分析(X-ray diffraction,XRD)、场发射扫描电镜(field emission scanning electron microscopy,FESEM)、能谱仪(energy dispersivespectroscopy,EDS)、高温摩擦磨损试验机和轮廓仪分别分析不同温度下的氧化增重、表面形貌以及摩擦后表面形貌和摩擦因数之间的关系,初步探讨成分和组织结构对金属陶瓷高温摩擦磨损性能的影响。研究结果表明,室温时主要磨损机理为磨粒磨损和晶粒的滑出,高温时则为黏着磨损和氧化磨损,在摩擦磨损过程中摩擦层的形成和脱落对摩擦性能影响显著。  相似文献   

11.
采用温挤压技术对40Cr钢进行成形试验,考察了不同温度下温挤压试样的摩擦-磨损行为.通过扫描电镜、能谱仪和X射线衍射仪分析了40Cr钢磨损后表面形貌、化学元素分布和物相组成,讨论了40Cr钢温挤压的磨损机理.结果表明,在挤压温度为550℃时试样晶粒尺寸细小,残余奥氏体含量较高,硬度最高,其磨损性能为最佳;而当温度为650℃和750℃时,晶粒尺寸较粗大,残余奥氏体含量降低.在5N载荷作用下,挤压温度为550℃时,摩擦因数为0.7667;当挤压温度达到650℃,摩擦因数为0.8587,提高了12.01%,磨损性能降低;750℃时,摩擦因数为0.8764,相比550℃提高了14.31%,磨损性能进一步变差;在550、650和750℃时,磨损形式主要为磨粒磨损.  相似文献   

12.
为了研究重载顶推装备滑动副的摩擦磨损性能,提出一种可以模拟重载顶推装备顶推过程的试验台,研究以聚四氟乙烯(PTFE)/丙烯腈-丁二烯-苯乙烯(ABS)/二硫化钼(MoS2)复合材料和0Cr18Ni9不锈钢组成的滑动副在不同载荷且无润滑工况下,摩擦因数变化趋势并揭示摩擦副的磨损机理。利用扫描电子显微镜(SEM)和能谱仪(EDS)对滑动副磨损后的表面微观形貌和化学成分进行分析。研究结果表明:随着滑动次数的增加,滑动副摩擦因数呈先增大后减小,最后趋于稳定的变化趋势。重载下滑动副摩擦因数初始值高于轻载下摩擦因数,但最终稳定值低于轻载下摩擦因数。轻载下主要磨损机制表现为磨粒磨损和黏着磨损;而重载下主要磨损机制表现为黏着磨损和疲劳磨损。  相似文献   

13.
为研究液体火箭发动机密封材料——铜基石墨材料的摩擦磨损规律,采用销盘试验考察了铜基石墨材料在干摩擦和水润滑条件下的摩擦磨损性能和磨损机理,探讨了速度、载荷、摩擦温升对材料摩擦磨损性能的影响,结果表明:水润滑条件下不易形成铜基石墨转移膜,所以水润滑时的摩擦因数比干摩擦时的摩擦因数大;水润滑下,磨损机理为黏着和磨粒磨损,适当增加载荷、降低速度有利于降低铜基石墨材料的磨损率;干摩擦下,磨损机理为黏着磨损,适当降低载荷、提高速度有利于降低铜基石墨材料的磨损率。  相似文献   

14.
为研究重载接触工作状况下机械零部件的耐磨性,提高零部件的使用寿命,以某重载装备伸缩臂的托辊系统为研究对象,进行托辊系统与支撑板重载接触试验,研究摩擦试件的磨损机理.使用光学显微镜、扫描电子显微镜和能谱分析仪对试件磨损后的表面宏/微观形貌、化学成分和塑性变形情况进行分析.结果表明,在重载工作状况下,随着磨损次数的增加,支撑板的磨损机理呈现为综合的磨粒磨损和黏着磨损;而由于托辊的硬度比支撑板硬度高,所以托辊的磨损机理主要是磨粒磨损,伴随着轻微的黏着磨损.通过对磨损后托辊截断面的显微组织观察,发现表层片状珠光体局部区域有位错、组织破坏等现象,这表明重载接触下托辊已经发生塑性变形.  相似文献   

15.
高铝铜合金激光熔敷层高载荷干摩擦下的摩擦磨损特性   总被引:1,自引:0,他引:1  
采用激光熔覆技术在45#钢基体上制备高铝铜合金涂层,对涂层进行较高载荷下的干摩擦磨损实验研究,测定不同载荷下涂层的摩擦系数,观察涂层的磨损形貌,测量涂层不同载荷下的磨损失重量,探讨涂层的磨损机理。结果表明:随外加载荷的增加,激光熔覆层的摩擦因数变化很小,其值在0.65~0.83,具有很好的摩擦稳定性,磨损量随载荷的增加逐渐增大,但不同载荷下涂层的磨损机理不同,在100N的较低载荷下,涂层以磨粒磨损和刮擦磨损为主,随载荷增加到200、300N时,磨损失重的主要原因是切削磨损和磨粒磨损,当载荷超过400N时,涂层的磨损形式则以磨粒磨损、粘着磨损和剥落磨损的复合磨损形式体现.  相似文献   

16.
超高强钢板冲压模具磨损CAE分析研究与应用   总被引:1,自引:0,他引:1  
针对超高强钢板冲压模具的磨损问题,提出一种有效而快捷的预测模具磨损量和使用寿命的方法.该方法采用Archard磨损理论,得到冲压成型结束后模具的磨损区域主要集中在模具圆角处.系统地研究了模具硬度、冲压速度和模具材料对模具磨损程度的影响.结果表明:模具硬度达到60~65HRC时能有效减小磨损量;模具磨损量与冲压速度成正相关关系.采用磨损累积法预测模具修模前的使用寿命,模拟得到的冲压7 500次的模具磨损量与试验数据仅相差1.47%,表明该方法是正确可行的.这对于确定合理的冲压工艺方案和模具结构设计具有重要的实用价值.  相似文献   

17.
采用超音速火焰喷涂法在H13钢表面制备WC-12Co涂层,通过扫描显微镜、X线衍射仪和能谱仪分析其表面-界面形貌、物相和化学元素组成。利用球/平面接触方式进行涂层高温磨损试验,通过扫描电镜和能谱仪分析磨痕形貌和化学元素的变化,讨论高温对涂层摩擦因数和磨损性能的影响。研究结果表明:涂层界面致密,与基材紧密结合;在600,700和800℃时涂层平均摩擦因数分别为0.395 5,0.327 1和0.266 4;600℃时涂层以黏着磨损为主,700℃时涂层以氧化磨损为主,并伴有磨粒磨损,800℃时涂层以严重的氧化磨损为主。  相似文献   

18.
研究铜基预处理工艺过程中不同除油温度和酸洗时间对Ni-P-PTFE复合涂层的微观结构和力学性能的影响.首先对H70黄铜进行不同工艺的预处理,然后在基体上先镀Ni-P层,最后化学镀Ni-P-PTFE复合涂层.通过控制预处理过程中除油温度和酸洗时间,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪和HSR-2M摩擦磨损试验机对涂层的微观结构和力学性能进行表征和测试.结果表明:不同除油温度和酸洗时间对Ni-P-PTFE复合涂层的微观组织、涂层硬度和摩擦因数均有较大的影响.当除油温度为70℃、酸洗时间为4 min时,可在基材上得到润滑性和硬度等综合性能优良的Ni-P-PTFE复合涂层,涂层硬度达到5.16 GPa,摩擦因数为0.135.  相似文献   

19.
采用超音速火焰喷涂(HVOF)工艺在T10钢表面制备了WC-10Co-4Cr涂层,用扫描电镜(SEM)、X射线衍射仪(XRD)观察了喷涂粉末和涂层的微观结构,用摩擦磨损试验机测试涂层在无润滑及油润滑条件下的摩擦磨损行为。结果表明:WC-10Co-4Cr涂层的未融颗粒较多,涂层微观结构致密,孔隙率约为0.8%;涂层表面显微硬度呈现常规的单模分布,而涂层-基体截面显微硬度呈现双态分布,涂层表面硬度高于截面硬度,且更为稳定;在干摩擦和油润滑条件下,涂层的摩擦系数随加载力的增大而减小,基体的摩擦系数也随加载力的增大而减小;WC-10Co-4Cr涂层的磨损深度约为T10基体磨损深度的1/3;WC-10Co-4Cr涂层的磨损机制为磨粒磨损,T10基体的磨损机制为黏着磨损。  相似文献   

20.
采用等离子粉末堆焊工艺在316H不锈钢表面堆焊Tribaloy® T400 (T400) 合金涂层,研究焊接时不同焊接热输入对堆焊件表面形貌、成分、维氏硬度、摩擦因数以及磨损质量的影响。结果表明:当焊接热输入为840 J/mm时,堆焊件表面没有明显的缺陷,维氏硬度以及耐磨性能达到最佳,且Cr元素含量最低;对316H不锈钢和堆焊件的磨损机制进行研究发现,316H不锈钢的磨损机制主要为剥层磨损,伴随有少量氧化磨损,堆焊件的磨损机制主要为磨粒磨损,伴随有黏着磨损。对焊接热输入为840 J/mm的堆焊件在700 ℃的环境中进行时效实验,堆焊件的维氏硬度随着时效时间的延长而增大,堆焊件经1000 h时效后,维氏硬度由原来的528增加到602,堆焊层具有较高的高温力学稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号