首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究损伤累积效应对隧道内爆破振动波传播与衰减规律的影响,利用萨道夫斯基公式对某大跨硐库施工过程中测得的爆破振动波结果进行拟合分析.结果表明:在单次爆破作用下,爆破振速与主频均随测点与爆破中心距离的增大而减小;在多次爆破作用影响下,测点爆破振速与主频均随爆破次数增加不断衰减;随着爆破次数的增加,衰减系数(α)缓慢增长,场地系数(K)逐渐衰减.现场爆破振动波的变化规律与室内试验结果相一致,且质点振动主频与峰值振速在变化规律方面存在较高对应关系.在进行振动波传播与衰减规律研究、爆破振动安全标准制定和振动危害效应评价时,应考虑损伤累积效应的影响.  相似文献   

2.
爆破参数如爆破安全药量、起爆时差等计算的准确性对城市隧道低振速控制爆破至关重要,在逐孔微差爆破振动叠加情况下其计算十分复杂和困难.以南方某城市隧道工程为背景研究上述问题的解决方法:实测各段雷管样本起爆延时范围;进行现场单孔单自由面爆破实验获得不同药量-时间振动曲线;再利用MATLAB程序,根据每段不同延时范围,将两单孔曲线按相邻段起爆的多个微差间隔进行不同振动叠加,选择其中最大振速的合成曲线与单孔振动曲线按下一相邻孔的微差间隔进行新的振动合成,最终得到8孔微差掏槽爆破后的累积叠加曲线.以此与现场实测振动曲线比较,发现第二临空面形成时间在起爆70ms以内;爆破药量设计以起爆70ms前的微差爆破合成振速为依据,确定了安全药量计算方法,在试验隧道控制振速1.0cm/s条件下安全药量为1.0kg,现场监测表明全部爆破振速均在要求指标之内.  相似文献   

3.
在下穿既有道路的新建隧道爆破施工中,爆破振动极易引起上部路面结构的损伤和破坏.以宝汉高速新建下穿316国道的关林子隧道为例,采用有限元法模拟路面关键点峰值振速、路面应力以及路面位移,并结合现场爆破振动与振速监测结果,对比分析爆破振动对既有道路的影响.主要研究结论如下:10个关键点爆破峰值振速均发生在掏槽眼爆破时,既有道路的应力以及路面位移均较小,不足以引起既有道路的破坏;根据数值模拟和现场测试结果,下穿段地表质点振速的合速度峰值不超过0.035 m/s时可保证既有道路安全.  相似文献   

4.
下穿村庄隧道爆破振动对地表建筑的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究下穿村庄隧道爆破施工时对地表建筑结构的影响,以某隧道为依托,采用数值模拟对地表建筑质点振动速度进行了分析,并与建筑结构的应力分布规律进行了对比,结合现场爆破振动测试,对地表振动速度衰减规律进行了研究,并指出了爆破振动的显著影响区域。数值模拟结果表明:隧道爆破时,地表建筑的竖向振动速度远大于横向,随着时间和距离的增大,振动速度迅速衰减;地表建筑主要承受水平方向的拉应力,振动速度不能完全反映建筑结构的受力状况。现场测试结果表明:地表振速随着与爆源距离的增大迅速下降;装药量为54kg时,地表振动速度最大为1.313cm/s。距爆源水平距离0~50m范围是爆破振动显著影响区域,模拟结果和测试结果吻合良好。  相似文献   

5.
上下交叉隧道爆破开挖过程中,确保已开挖隧道在爆破载荷作用下的安全是施工过程中的关键问题.以八达岭长城站隧道工程为背景,对进站层主通道爆破开挖进行爆破振动监测,得到了开挖断面在接近和远离监测点的过程中,各监测点的振速分布规律;对实测波形进行频谱分析,得到了不同频率范围的能量分布及不同时刻的瞬时能量.运用LS-DYNA程序建立上下交叉隧道有限元模型,提取了各监测单元的速度时程曲线及等效应力时程曲线.结果表明:各单元振速分布规律与实测振速分布规律相吻合;各单元的等效应力值小于岩体的拉伸屈服强度,未对隧道岩体造成破坏.结合数值计算结果,依据等效应力判据确定了保证已开挖隧道安全的质点临界振动速度,为上部隧道开挖对下部隧道的爆破扰动控制提供了理论依据.   相似文献   

6.
采用ANSYS/LS-DYNA软件中的ALE算法建立隧道-地层-管线三维数值模型,在地面测试爆破振动,验证数值模型可靠性;研究隧道爆破振动下地下管线横向和纵向的峰值振速和应力响应特征,探究管线和周边围岩的振动响应差异;分析净距、掏槽起爆药量和周边岩土性质对管线振动的影响。研究结果表明:数值模型中,地面测点的振速峰值与现场实测振速峰值相对误差均不超过5.0%;隧道爆破地震波引起管线横断面底部的峰值振速最大,中部次之,顶部最小,而管线中部的峰值拉应力最大,底部次之,顶部最小;沿管线纵向各点的振速峰值和拉应力峰值均出现在距离爆源0~4 m处,并随着与爆源距离的增大而逐渐减小;接触面处管线各单元的峰值振速和振动频率均明显比相应位置处土层单元的大;地下管线的峰值振速和拉应力均随着净距减小、掏槽装药量增大而不断增大,且管线上部的峰值振速和拉应力增量要比底部和中部的小;当地下管线周边为含卵石砂层时,管线的峰值振速和峰值拉应力最大,地下管线周边为回填黏土和夯实砂土时则较小。根据最大拉应力强度理论,建议管线的最大振速控制在4.68 cm/s以下。  相似文献   

7.
以重庆轨道交通环线冉家坝浅埋轻轨隧道工程为背景,进行循环掘进的地表爆破震动效应试验.通过测量隧道地表不同位置处引起的振动速度波形,研究地表震动特性及爆破地震波的传播和衰减规律.试验研究分析发现,掌子面前后的地表振动速度存在显著地差异,已开挖成形隧道改变了岩体的整体结构,爆破振速存在放大效应,且放大后的爆破振速随距离的增大而减小,用常规的萨道夫公式预测成形隧道地表的振动速度误差较大,而通过编写matlab函数进行数据统计、多元线性回归分析求出广义的爆破震动速度计算公式,预测成形隧道地表振动速度误差较小.所以广义的爆破震动速度公式预测成形隧道地表振动速度值得推广.  相似文献   

8.
城市浅埋隧道下穿密集建筑群时,如何在保证掘进效率的前提下,控制爆破振动对地表建筑物安全的影响是关键。现以贵阳观山西路至兴筑西路段隧道施工下穿金阳步行街为工程背景,通过中心大空孔二阶复式掏槽形式,设计合理的装药结构和爆破参数,采用雷管跳段使用对起爆网路进行优化,成功地将地表振动速度控制在2.0cm/s范围内。通过地表振动监测与爆破信号分析,证明了该爆破方案的可行性,具有良好的经济和社会效益。  相似文献   

9.
为了避免隧道爆破施工时邻近地表及地下输油管道受到爆破振动造成的不良影响,需确保爆破施工工作面与输油管道保持一定安全距离。基于青岛胶州湾第二海底隧道黄岛端斜井工程,通过对斜井一期工程隧道爆破施工引起的地表振动进行监测,研究了工作面前方地表振速的衰减规律,并采用Hilbert-Huang变换及小波包分析了爆破振动频域特征。结果表明:在距工作面0~40 m的高振速区范围内,振速呈现震荡变化,峰值合振速出现在距工作面一定距离的地表区域,而在高振速区之外部分呈指数衰减趋势;爆破振动的频域分布主要集中在0~200 Hz的低频区域,50 Hz左右为其最集中区域,瞬时能量峰值出现在0~1 s内,其中在0~25 Hz范围内能量占比最高为13.41%,与输油管道自振频率范围存在部分重叠。同时,引入萨道夫斯基修正公式并拟合出适用于本工程条件下的振速预测公式模型,从法律规范、工程实践及抗震能力3个方面考虑提出输油管道安全振速为1 cm/s,计算得到50 m范围内最大单段齐爆药量和安全距离之间的关系,为后续斜井二期工程下穿输油管道区域时的爆破方案优化提供参考。  相似文献   

10.
文章以北京地铁隧道16号线施工为工程背景,采用电子雷管爆破技术,研究了不同炮孔布置方式及隧道上方土体较厚时爆破振动波的传播规律。研究结果表明:采用三排掏槽孔爆破可以有效的降低爆破振动,并提高单次进尺;隧道埋深较大时,爆破主频较低,信号内小于20Hz的低频能量比例较大。采用电子雷管微差爆破很难提高爆破远区的振动主频,因此必须减小爆破药量和单次进尺以控制振动强度;距隧道掌子面25—30m范围内有建筑物时,必须采用小爆破进尺,单孔装药量最大不超过1.2kg;当建筑物在30m以外时,可以适当增加爆破进尺,以保证隧道的高效和安全施工。研究成果可为类似工程提供有益的参考。  相似文献   

11.
兰渝铁路龙凤泄水隧道同时下穿3条既有铁路隧道,且下穿段围岩级别设计均为Ⅴ级围岩,施工难度大,泄水隧道和既有铁路隧道的沉降控制和爆破振动速率控制对铁路运营安全至关重要。针对这些难点,现场在下穿前多次进行试验段试验并总结了隧道沉降控制、爆破控制方面的一些重要施工参数,并根据这些参数确定的采用电子雷管错相减震爆破进行降振的技术方案及隧道沉降控制技术标准,对正式下穿段施工安全顺利的完成起到了很大的指导作用。  相似文献   

12.
地铁隧道掘进爆破振动监测与爆破参数的优化研究   总被引:1,自引:1,他引:0  
结合深圳地铁7号线皇—福区间隧道爆破开挖的工程实际,通过理论计算与现场试验的方法,得到了适用于现场地质条件的爆破振动衰减规律。获得了爆破振动回归分析曲线,确定了相应的爆破振动预测公式;同时根据现场试验调整并优化了施工方法及相关的爆破参数。在确保爆破振速和频率满足设计要求的同时,加大了循环进尺,降低了掘进成本,实现了隧道爆破开挖的高效施工;可为后期的爆破设计及施工提供理论依据。  相似文献   

13.
以青岛地铁1号线海底隧道和胶州湾海底公路隧道为工程背景,应用ANSYS/LS-DYNA建立数值模型进行研究,分析爆破作用下既有隧道的振动响应特征,建立4个模型分析海水深度对爆破振动的影响。结果表明:既有隧道中,最大爆破振速出现在对应掌子面迎爆侧上方,迎爆侧振动速度大于背爆侧,前者为后者的1.6~2.7倍;在既有隧道横断面上,三向振速及其衰减速率均表现为径向振速切向振速垂向振速,表明既有隧道空间对垂向振速的削减作用最小。在既有隧道轴向上,合振速关系表现为迎爆侧拱腰迎爆侧拱脚拱顶,对应掌子面前方振速大于后方,前者为后者的1.07倍。在隧道拱顶与海平面距离相同的条件下,既有隧道中各向振速随海水深度的增加而增大,但海水深度对爆破振速衰减速率的影响并不明显。  相似文献   

14.
控制城市地下交通隧道的爆破振动,可以有效减轻对居民区建筑物产生的振动影响.本文结合工程实例,就爆破振动监测中的测试仪器、测点布置方式以及数据分析进行了阐述;并基于监测数据的分析,优化了现场爆破方案.实践证明:采用本文的测试仪器和测点布置方武,可有效地监测建筑物基础测点的振速;采取浅孔爆破,严格控制掏槽眼药量,增加钻眼数...  相似文献   

15.
海底隧道掘进爆破开挖岩石的过程中,爆破振动必然会对隧道覆盖岩石造成损伤和破坏,危及隧道施工安全.阐述了质点峰值振动速度临界值作为爆破围岩损伤的判别标准和作用于炮孔壁上爆炸脉冲荷载计算公式.以青岛胶州湾隧道为背景,采用Abaqus软件,对周边眼爆破振动的覆盖岩石动力响应进行数值模拟,并对计算结果按照最小二乘法进行拟合,得到覆盖岩石质点峰值振动速度衰减公式.按质点峰值振动速度判别标准计算出了周边眼爆破引起的覆盖岩石损伤范围仅为0 358 1 m.研究表明采用低爆速炸药、不耦合间隔装药光面爆破技术, 爆破对海底隧道覆盖岩石损伤范围较小.  相似文献   

16.
为研究大跨隧道近距下穿建筑物时爆破振动对隧道周边建筑物的损伤。依托南方某公路隧道爆破工程,选取典型的建筑物——书画院4号楼,利用ANSYS建立书画院全结构模型,探究其高阶模态特性,并分析不同爆破峰值振速下的书画院应力响应特征。结果表明:书画院1~6阶为低阶整体模态,频率为4.16~12.99 Hz,振型为建筑物整体变形;7~20阶为高阶局部模态,频率为13.65~24.03 Hz,振型以左侧墙体、屋檐、一层横墙和二层中隔墙等局部构件变形为主;应力水平最高的是门角、窗角等应力集中部位,其峰值是横墙的11.6~18.4倍,在峰值振速较低时(1.0cm/s)就有可能在瞬间产生很高的应力,超过抗拉强度,造成损伤破坏。次高的是高阶模态中振动较大的局部构件,如门窗连接处、左侧墙面和二层中隔墙,应力水平也较高,其峰值是横墙应力的5.4~11.1倍。随着峰值振速的不断增大,到达3.0 cm/s和6.0 cm/s时,门窗连接处墙面、左侧墙面和二层中隔墙就可能会发生损坏;主要的横墙承重构件一般不会发生损伤。数值计算结果表明,高阶模态能较好的解释爆破振动下结构局部损伤的原因。  相似文献   

17.
将掏槽孔的爆破简化为一系列球形药包的爆破.通过复变函数中的保角变换,将爆破点与隧道挖空段的拱顶映射到复平面的同一侧,即可将隧道挖空段的地表振动问题转化为半空间中的地表振动问题,最终得出隧道挖空段地表振速的计算方法.最后,通过实际工程,对比理论计算和实际监测的隧道轴线地表质点的振速峰值分布情况.结果表明:验证理论计算的可行性.  相似文献   

18.
以泉厦高速公路大帽山隧道为工程背景,应用数值模拟方法从振动速度、振动应力和应力波3个方面分析得出沿扩挖隧道轴向动力特性,同时分析自由面对爆破地震波的影响.结果表明:距掌子面15m处振速衰减达50%,且在离掌子面10m处振速已经低于安全临界值;最大主应力峰值在距掌子面15m的范围内衰减最快,在离掌子面15以上时爆破振动影响逐渐趋于稳定;应力波在0.4ms时应力达到最大值13.3GPa,而在0.6ms时最大应力衰减到771.2MPa,只有0.4ms时的5.80%;自由面对爆破地震波的反射作用使能量损失55.6%,但先建隧道自由面使地震波反射叠加,从而使能量增加.  相似文献   

19.
田世雄  李德武  梁庆国  王众 《甘肃科技》2009,25(16):102-104
应用DH5938动态信号测试分析系统,对既有隧道衬砌表面迎爆侧动应变进行试验测试,分析动应变与振速的关系;探讨了以动应变来衡量爆破振动对既有隧道影响的可能性,研究了邻近铁路隧道施工爆破振动对既有隧道衬砌结构的影响。  相似文献   

20.
针对岩溶地区隧道爆破开挖对溶洞围岩和施工安全的直接影响,对广东清(远)连(州)高速公路白须公隧道救援通道爆破震动进行了监测。通过对溶洞壁的质点振动速度峰值统计分析,总结了爆破地震波在溶洞壁上的衰减规律,得出了隧道爆破对于临近溶洞的安全质点振动速度峰值。监测结果表明:隧道爆破震动中,相邻的溶洞壁径向的振动速度较小,垂直切向和纵向的振速相当;随着比例药量的减小,垂直切向和径向的振速逐渐接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号