首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以拟建的某主跨808 m公铁双层斜拉桥为工程依托,采用节段模型风洞试验研究不同攻角下双层桁架梁断面的涡振性能及5种气动控制措施的抑振效果,结合计算流体动力学(CFD)静态绕流模拟,对比分析双层桁架梁断面的涡振机理及控制方法. 研究表明:主梁断面原设计方案在+3°和0°风攻角下存在明显的竖向和扭转涡振现象,且振幅超过规范允许值;间隔封闭上层桥面栏杆或增设抑流板可有效抑制主梁扭转涡振,但竖向涡振振幅仍不满足规范要求;上弦杆外侧增设风嘴可有效抑制主梁竖向和扭转涡振,而下弦杆外侧增设风嘴对主梁涡振抑振效果有限. 气流经主梁原设计断面上层桥面分离后,在其上下表面形成周期性脱落的大尺度旋涡,并在上层桥面后部再附,这是主梁发生竖向涡振的主要诱因;上弦杆外侧增设风嘴可引导气流平稳通过上层桥面,消除了周期性的旋涡脱落,并在其上表面形成一段狭长“回流区”,从而有效抑制了涡振的发生.  相似文献   

2.
以主跨为1 660 m流线型箱梁悬索桥为工程依托,采用风洞试验和CFD数值模拟相结合的方法对影响大跨度悬索桥颤振稳定性的主要因素(主缆空间形式、主梁气动外形和中央稳定板高度)进行了研究,并对气动控制措施机理进行了探讨.结果表明:主缆布置形式对桥梁结构颤振临界风速的影响主要表现为主缆布置形式导致桥梁结构扭转频率的改变,从而影响桥梁结构颤振临界风速;适当增加主梁断面宽高比可有效提高桥梁结构颤振临界风速;设置合适高度的中央稳定板可有效提高带水平分离板的流线型箱梁断面颤振临界风速.中央稳定板附近产生的涡会引起主梁断面竖向气动力增加,导致主梁断面竖向运动参与程度提高,抑制了主梁断面扭转运动,从而提高了流线型箱梁断面颤振稳定性.  相似文献   

3.
Π型钢-混凝土结合梁由于其良好的受力性能和经济性,广泛应用于大跨径斜拉 桥中,但其气动性能相对略差,若设计不当则容易出现涡激振动现象,从而影响行车舒适性、 安全性或结构疲劳寿命等. 本文以广东潮汕大桥为实际工程依托,该桥为主跨205 m的独塔双 索面Π型钢-混凝土结合梁斜拉桥,开展了Π型钢-混凝土结合梁断面涡激振动及气动控制措 施研究. 首先,采用几何缩尺比为1∶50的主梁节段模型对该桥原设计方案主梁断面运营期涡 激振动进行了试验研究;然后,分别采用下稳定板、导流板、裙板、上稳定板等气动控制措施对 主梁涡激振动响应的控制效果进行了研究;最后,采用计算流体动力学方法(Computational Fluid Dynamics,CFD)对主梁断面最终采用气动控制措施机理进行了研究. 结果表明:主梁原 设计方案在设计风速范围内存在大幅涡激共振现象,涡激振动幅值超过规范限值;采用“三道 下稳定板+两侧竖向裙板+上中央稳定板”组合气动控制措施后,主梁涡激振动响应得到明显 抑制;该组合气动控制措施对Π型钢-混凝土结合梁涡激振动的控制机理主要表现为:设置三 道下稳定板可有效破坏Π型主梁下侧较大旋涡,Π型主梁两侧设置竖向裙板改善了其气动流 线型程度,设置上中央稳定板可有效阻止主梁上侧较大旋涡的运动.  相似文献   

4.
大跨度桥梁中央开槽断面的涡振控制试验   总被引:2,自引:0,他引:2  
以青岛海湾大桥大沽河航道桥中央开槽主梁断面为研究对象,采用大尺度节段模型风洞试验方法,研究了不同阻尼比下两种导流板设置方案的涡振控制效果,分析了不同导流板特征尺寸和位置对随风速变化的涡振振幅的影响.试验结果表明:中央开槽断面的涡振性能较差,对导流板设置的变化比较敏感,涡振控制效果除了与原断面气动外形和槽宽有关之外,还与导流板本身的高度、长度和倾角密切相关,建议导流板高度设置需不受桥梁断面底部附属设施的阻碍,长度应适宜,倾角135°.  相似文献   

5.
为研究栏杆高度对流线型箱梁涡激振动性能的影响并揭示其机理,通过节段模型风洞动态测压与测振试验,研究了流线型箱梁涡振响应、平均和脉动风压系数、频域特性以及局部升力对涡振的贡献系数分布情况. 结果表明:安装栏杆后主梁表面的平均风压系数增大,脉动风压系数变化复杂,脉动风压卓越频率与模型自振频率基本一致,局部升力对涡振的贡献作用增大,使主梁涡振加剧;栏杆高度的变化对主梁表面平均风压系数基本没有影响,但对其脉动风压系数的分布规律及脉动压力功率谱幅值有较大影响;栏杆高度的变化,使主梁上表面前部和尾部区域的局部升力对涡振贡献程度呈现出显著差异,当贡献值增大时,主梁涡振响应增大. 当栏杆高度为45%的梁高时流线型箱梁的涡振幅值最大,在此基础上适当降低或增大栏杆高度均有一定的抑振效果,降低栏杆高度效果更好. 研究结果为流线型箱梁栏杆的设计和相关研究提供了依据和参考.  相似文献   

6.
针对闭口流线型钢箱梁涡激共振响应风洞试验研究中存在的尺寸效应问题,依托广东南沙至中山高速公路洪奇门特大桥,采用风洞试验和计算流体动力学相结合的方法进行研究. 首先分析了两种几何缩尺比下闭口流线型箱梁节段模型风洞试验中涡激共振响应的差异;然后,采用流固耦合数值模拟方法计算了不同缩尺比闭口流线型箱梁断面涡振响应. 结果表明:闭口流线型钢箱梁涡激共振响应存在明显的模型尺寸效应,表现为常规比例(λL=1/60)主梁节段模型涡振振幅大于大比例(λL=1/30)主梁节段模型涡振振幅;二维数值模拟计算得到的涡激共振响应锁定风速区间、振幅与风洞试验结果吻合较好,验证了数值模拟方法的精度,同时也表明模型长宽比及试验阻塞率的差异不是闭口流线型箱梁涡激共振尺寸效应的主要影响因素;随着主梁断面模型缩尺比的增大,其涡激共振响应总体呈现下降趋势,且不同缩尺比下主梁断面静态绕流流场的涡脱频率分布存在显著差异.  相似文献   

7.
采用风洞试验和CFD数值模拟相结合的方法对主跨700m的广东江顺大桥主桥结构抗风性能进行研究,包括主梁、桥塔气动参数试验与CFD模拟、主梁1/60几何缩尺比节段模型测振试验、主梁1/25几何缩尺比节段模型涡振试验、全桥气弹模型试验研究等.结果表明:该桥在成桥状态和施工状态具有足够的抗风稳定性,在设计风速下涡振性能和抖振响应性能均满足规范要求;大比例主梁节段模型得到的涡振振幅小于常规比例节段模型得到的涡振振幅,表明采用常规比例模型进行桥梁主梁涡振性能评估是偏于保守的.  相似文献   

8.
港珠澳大桥采用的大挑臂钢箱梁外形较钝,在常遇风速下易发生涡激振动。该文通过一系列节段模型和全桥气动弹性模型风洞试验,详细研究了各种气动措施和阻尼措施对此类断面涡激振动性能的影响。结果表明:大挑臂钢箱梁截面存在2个竖向涡振区和1个扭转涡振区;依据涡振振幅和发振风速区间,通航孔斜拉桥需关注第2个竖向涡振区,非通航孔连续梁桥需关注第1个竖向涡振区;在栏杆上安装弧形扰流板的气动措施可有效改善其涡激振动性能;增加结构阻尼可显著降低其涡振振幅,阻尼比达到1.0%时,涡激振动基本消失,该阻尼限值可作为港珠澳大桥的调谐质量阻尼器的依据;最后,利用三维非线性涡振分析方法对节段模型和全桥气弹模型风洞试验结果的一致性进行了讨论。  相似文献   

9.
针对闭口流线型主梁结构涡激力展向相关性问题,在均匀流场条件下分别对振动状态和静止状态流线型主梁节段模型进行了不同风攻角的涡激力展向相关性试验研究,分别分析了流线型主梁断面涡激振动响应、涡激力展向相关性及主梁表面压力等.结果表明:振动状态主梁断面涡激力展向相关系数与振幅、锁定区风速等相关,锁定区上升段主梁断面涡激力展向相关系数大于锁定区最大振幅处主梁断面涡激力展向相关系数,扭转涡振锁定区升力矩展向相关系数大于竖向涡振锁定区竖向涡激力展向相关系数;振动状态主梁断面测点压力系数展向相关系数与振幅相关,振幅越大则相关系数越大.  相似文献   

10.
为了研究梁间距对双层钢箱梁涡振特性的影响,设计了 6类试验组合,共31种试验工况,通过节段模型测振风洞试验,测得各个工况单层和双层钢箱梁的量纲一化涡振振幅,分析了在不同来流风攻角时,梁间距对双层钢箱梁涡振特性的影响,并与单层钢箱梁的试验结果进行对比,研究其变化趋势;在双层钢箱梁的计算流体力学(CFD)分析过程中,选用了...  相似文献   

11.
以大跨桥梁中常用的近流线型箱梁断面为研究对象,通过计算流体动力学(computational fluid dynamics,CFD)方法,选取下腹板倾角这一关键几何参数进行研究,对比分析不同腹板倾角情况下的静风稳定性能,阐述静风失稳机理.研究结果表明,当下腹板倾角较小时,在底板与下游腹板交接处存在负压力区,可以产生向下的升力分量,从而降低升力系数;在一定的下腹板倾角范围内(9°~23°),竖向位移或扭转位移较小,有利于提高静风失稳临界风速.选用下腹板倾角较小(9°~23°)的断面,可有效增大上表面的正压力以及下表面的负压力,降低主梁的升力系数,降低阻力系数,从而达到提高静风稳定失稳风速的目的.  相似文献   

12.
以针对颤振机理研究而建立的二维三自由度耦合颤振分析方法为理论工具,结合节段模型风洞试验,对薄平板断面中央稳定板气动控制措施的颤振控制效果和控制机理进行了研究.通过对基本断面和四种不同高度稳定板断面的颤振性能、颤振驱动机理和颤振形态变化规律的研究表明,当稳定板高度恰当时,中央稳定板的设置能够有效地改善结构的颤振稳定性能.其控制机理是增加竖向自由度参与程度,改变耦合气动阻尼的性质和发展规律,从而抑制系统扭转运动的发散,使得颤振形态转化为竖弯形式.但是当稳定板高度超过临界值后,由于系统竖弯运动稳定性的降低,结构的颤振稳定性能反而会下降.  相似文献   

13.
以苏通长江公路大桥为工程背景,针对该桥风致振动响应监测系统实测的一次下击暴流风与桥梁结构振动加速度响应实测数据,对该桥在一次雷暴天气下风速、风向及主梁振动响应进行研究.首先,对桥位处下击暴流实测风速、风向数据进行分析,获得了该桥主梁跨中、桥塔塔顶处下击暴流风的时变平均风与脉动风特性;然后,对下击暴流作用下主梁风致振动加速度响应数据进行分析.结果表明:在下击暴流作用下,该桥主梁与塔顶高度处风速发生了明显突变,持续时间约为10~24 min;主跨跨中主梁外侧边缘处下游、上游侧最大瞬时风速分别为32.4 m/s和27.3 m/s,南、北桥塔塔顶高度处最大瞬时风速分别达60.5 m/s和62.9 m/s.主梁高度处30 s时距湍流度约0.048~0.32,10 min时距湍流度约0.43~0.51;主梁下游与北塔处折减脉动风速符合高斯特性,其功率谱与Burlando等学者的实测结果吻合较好.主梁跨中附近(即NJ26D、NJ32D拉索锚固处)发生了较为明显的短时竖向与横桥向振动,相应加速度响应幅值分别为0.25 m/s2和0.10 m/s2,对应位移幅值分别为0.12 m与0.03 m;主梁竖向振动响应明显大于横桥向振动响应,主梁竖向振动主频为0.183 Hz,与主梁全桥一阶正对称竖弯振型频率0.174 Hz接近;横桥向振动主频为0.117 Hz,与主梁全桥一阶正对称侧弯振型频率0.0975 Hz接近.  相似文献   

14.
基于数值计算方法研究了开口断面主梁的颤振稳定性及下稳定板的作用机理.通过对比风洞试验的三分力及颤振临界风速结果,验证数值计算方法的可靠性,借助流场可视化直观地分析了颤振机理及下稳定板的抑制机理.结果 表明:来流在上游栏杆、上游箱室底板及下检修道处分离形成旋涡并向下游发展,期间产生与桥断面运动方向相同的气动力,成为颤振发散主导因素.在桥梁断面增设下稳定板能形成稳定的旋涡,气动力总体做负功,有效地抑制了颤振发散.增设1/4下稳定板,稳定板间形成了稳定的旋涡,气动力在运动周期内持续做负功,而同时增设下中央稳定板和1/4下稳定板在上游检修道与稳定板间形成的旋涡与上表面的旋涡交替主导气动力的方向,气动力先做负功后做正功再做负功.故只增设1/4下稳定板相比同时增设1/4下稳定板和下中央稳定板更有利于改善主梁的颤振稳定性能.研究结果能给同类型桥梁断面颤振抑振措施的选取提供参考.  相似文献   

15.
超大跨度钢箱梁悬索桥的结构阻尼和刚度较小,其竖向模态频率低且密集,随风速变化加劲梁可能先后发生多次涡激振动。首先针对某超大跨度悬索桥,进行有限元建模和动力分析。为研究悬索桥多模态涡激振动响应机理和有效抑振措施,在忽略气动刚度和气动阻尼影响时,通过简化Scanlan经验非线性涡激力数学模型得到谐涡力数学模型。然后以各竖向模态涡振最大位移响应为优化目标,基于液体黏滞阻尼器参数敏感性分析和TMD参数优化设计方法,分别确定阻尼器参数和TMD参数。最后探讨了黏滞阻尼器耗能系统控制悬索桥多阶竖向模态涡振的可行性,详细分析了TMD系统控制涡激振动的效果。结果表明:在塔梁间设置黏滞阻尼器对各竖向模态主要起振区域的涡振位移控制效果不理想;TMD系统能有效抑制常遇风速范围内加劲梁的多阶竖向模态涡振响应,将最大振幅严格控制在容许值以内,提高了加劲梁抵抗涡振变形的能力。  相似文献   

16.
基于尺度自适应模拟(SAS)和计算结构力学(CSD),对复合材料海洋热塑性增强立管(Reinforced Thermoplastic Pipe,RTP)涡激振动响应进行数值计算.数值计算了聚氯乙烯(PVC)立管涡激振动响应和复合材料层合板模态,并与实验数据对比,验证了文中双向流固耦合方法和复合材料建模的准确性.并且,分别计算了不同条件下的RTP立管和相同尺寸的钢制立管的涡激振动响应.计算结果表明:来流速度为0.1m/s时,RTP立管都发生了频率锁定现象;RTP立管的来流向振动响应和横向振动响应同样重要,不可忽略;来流向振动响应及流场三维效应导致立管中部区域振动响应的轨迹比较杂乱;来流速度为0.2m/s时,相同尺寸的钢制立管的来流向和横向振幅比RTP立管的小,且钢制立管主要是低阶模态振动;铰-铰约束情况下的RTP立管的振幅相比固定-固定约束情况下的整体上稍大,且主要是2、3阶振型运动.  相似文献   

17.
摘 要:以四渡河悬索桥为研究背景,建立了该大跨钢桁架加劲梁悬索桥的空间动力计算模型,推导了基于Leger的LMM和拟静力位移概念的多支承激励下的非线性运动方程,在此基础上对该桥地震反应进行了空间非线性时程分析,研究了土-桩-桥相互作用和中央扣的设置方式对大跨悬索桥地震响应的影响。结果表明,土-桩-桥相互作用对悬索桥地震反应的影响与地震动输入方式密切相关,受水平地震波影响较大,而受竖向地震波的影响很小;一对柔性中央扣对加劲梁的纵桥向位移和应力响应的影响均不利,而刚性中央扣和三对柔性中央扣对限制加劲梁的纵桥向振幅有较显著作用,但是由此导致了结构地震应力响应显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号