首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用电化学沉积法在酸性溶液中制备核固红(NFR)修饰玻碳电极,循环伏安法研究核固红膜的电化学性质,核固红膜在PBS(pH=2.45)中,Epa=-0.31V,Epc=-0.36V;当扫描速度v<200mV·s-1时,核固红膜峰电流与v呈线性关系,且Ipa/Ipc≈1,符合可逆过程的特征.核固红修饰电极对抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)具有显著的电催化作用, 差分脉冲伏安结果表明,AA、DA和UA浓度分别在6.5×10-5~2×10-3mol·L-1,5×10-7~2×10-5mol·L-1和6×10-5~1×10-3mol·L-1范围内其氧化峰电流与各自的浓度呈线性关系,而且AA、DA和UA混合物在核固红修饰电极表现出良好的分离伏安峰,可实现对三种物质的同时测定.  相似文献   

2.
利用循环伏安法制备了聚结晶紫薄膜修饰电极(PCVE),详细研究了该修饰电极对生物分子多巴胺(DA)和尿酸(UA)的电催化作用.结果表明,PCVE对DA和UA具有较强的电催化作用,并且对抗坏血酸(AA)具有较强的抗干扰作用,允许高达1 000倍以上AA存在而不干扰痕量DA的测定.将PCVE结合差分脉冲伏安(DPV)技术,对DA的检测线性范围为4.0×10-7 mol/L~2.5×10-5 mol/L,检测限可达3.5×10-8 mol/L;对UA的检测线性范围为5.0×10-7 mol/L~5.0×10-5 mol/L,检测限达5.0×10-8 mol/L.利用该法可以对DA和UA进行同时测定,将该法用于尿液中尿酸的测定,取得满意结果.  相似文献   

3.
制备了聚苯乙烯磺酸钠(PSS)/单壁碳纳米管(SWNTs)膜修饰玻碳电极,在磷酸盐缓冲溶液(PBS)中,研究了抗坏血酸(AA)、尿酸(UA)、多巴胺(DA)在该修饰电极上的电化学行为.结果表明:AA、UA、DA在该修饰电极上的氧化信号能得到明显地区分,峰电位差值DA-AA为158mV,DA-UA为118 mV,AA-UA为276 mV.利用示差脉冲伏安法对体系中抗坏血酸(AA)、尿酸(UA)、多巴胺(DA)可以同时进行检测.其线性响应范围分别为1.0×10-3-1.0×10-4mol/L(AA);7.4×10-7-7.0×10-6mol/L(DA);1.0×10-6-1.0×10-5mol/L(UA).该方法用于针剂中多巴胺的检测,回收率在102.0-106.0%之间.  相似文献   

4.
采用电化学方法制备了纳米氢氧化镍/过氧化聚吡咯复合膜修饰电极(Nano-Ni(OH)2/PPyox),研究了该修饰电极的电化学性质及其电催化活性.结果表明:在0.10 mol·L-1 NaOH溶液中,该修饰电极对葡萄糖具有较强的电催化活性,且具有良好的抗干扰性.在优化实验条件下,安培法检测葡萄糖的线性范围为2.0×10-7 ~5.0×10-5 mol·L-1(r =0.999 7)和5.0×10-5~1.0×10-3 mol·L-1(r=0.999 4),灵敏度分别为1017 μA·mM-1 ·cm-2和733 μA·mM-1·cm-2.  相似文献   

5.
采用电化学法在滴涂纳米氧化锌(ZnO)的玻碳电极(GCE)上聚合修饰1H-咪唑-4-甲酸(HIMC),制得聚1H-咪唑-4-甲酸-纳米ZnO(PHIMC-ZnO)复合膜修饰的GCE(PHIMC-ZnO/GCE),并用扫描电子显微镜(SEM)及电化学方法对修饰电极的形貌和电化学特性进行了表征.利用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)在该修饰电极上的电化学行为.结果表明:在pH值为7.0的磷酸盐缓冲溶液(PBS)中,PHIMC-ZnO/GCE对AA,DA和UA均具有良好的电催化作用.在优化的实验条件下,AA,DA和UA的物质的量浓度线性范围分别为80~1 400,0.15~45.00和2~120μmol·L~(-1),相关系数分别为0.998 0,0.993 7和0.998 3,检出限(S/N=3)分别为0.50,0.03和0.09μmol·L~(-1).AA,DA和UA在不同扫速下的电化学行为表明:AA,DA和UA在PHIMC-ZnO/GCE上的电极过程受吸附过程控制,将PHIMC-ZnO/GCE应用于尿样和血清中AA,DA和UA的同时测定,结果令人满意.  相似文献   

6.
制备了十六烷基三甲基溴化铵(CTAB)/壳聚糖(CS)复合物膜修饰电极,研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极以及裸电极上的电化学行为。循环伏安法研究表明,CTAB与带负电荷AA之间的静电作用使AA的氧化过电位降低,DA和AA两者的峰电位差达360 mV,使得DA和AA重叠氧化峰得以分离。以此建立了同时测定DA和AA的电化学方法。微分脉冲伏安法研究结果表明,DA和AA氧化峰电流和其相应浓度分别在1×10~(-5)~2.8×10~(-3) mol/L和5×10~(-6)~6×10~(-4) mol/L的范围内呈良好的线性关系。应用该方法对DA和AA进行了选择性测定研究,取得良好结果。  相似文献   

7.
直接采用电化学还原法在玻碳电极上成功制备石墨烯(graphene,GN)修饰的电极和石墨烯/纳米纤维素/亚甲基蓝(graphene/nano-crystalline cellulose/methylene blue composite,GN/NCC/MB)复合材料修饰电极,并利用循环伏安法研究了这两种电极在PBS(phosphate buffered solution 0.1 mol·L-1,pH=7.0)溶液中的对抗坏血酸(ascorbic acid,AA)和尿酸(uric acid,UA)在该电极上的电化学行为.实验结果表明:在AA和UA共存体系中,GN/NCC/MB/GCE修饰的玻碳电极能够将AA和UA的氧化峰电位明显分开,峰电位相差300mV.并且用两种形式,研究了AA和UA两种物质峰电流与其物质的量浓度的关系,发现AA、UA的氧化峰电流与其浓度分别在40.0~700.0μmol·L-1、4.0~120.0μmol·L-1范围内呈线性关系.在AA和UA共存时,两者的最低检测限度分别为17.644 2μmol·L-1和3.251 1μmol·L-1.GN/NCC/MB复合材料修饰的玻碳电极可以实现AA和UA共存时两种物质的定量检测.  相似文献   

8.
以L-半胱氨酸作为电极修饰剂,采用循环伏安法研究L-Cys/GC电极的制备和DA在该修饰电极的电化学行为及其测定.DA在pH=6.684的磷酸盐缓冲溶液中,在L-Cys/GC电极上产生一对灵敏的氧化还原峰,峰电位分别为Epa=0.180 V和Epc=0.125 V(vs.SCE).同时用伏安法测定DA的线性范围为1×10-3~1.0×10-6 mol/L,检出限可低达1.0×10-7mol/L(S/N=3).对1×10-4 mol/L DA平行测定50次,其相对标准偏差约为2.5%.该电极可望进一步发展为微电极,用于生物活体内的神经递质DA的实际检测.  相似文献   

9.
利用电沉积法制备了1种[Li-BDC]/GC修饰电极,并用循环伏安法和交流阻抗法研究了L-抗坏血酸(AA)在修饰电极上的电化学行为.结果表明,与裸玻碳电极相比,该修饰电极对AA具有更高的电催化活性,其氧化峰电流增大了约1.6倍.探讨了不同实验条件对电极性能的影响,在最佳实验条件下,检测AA药物浓度的线性范围为3.0×10-7~2.5×10-3 mol·L-1,线性相关系数为0.9990,检出限为6.0×10-8 mol·L-1(信噪比为3∶1),回收率为97.2%~100.4%.该修饰电极具有较好的稳定性和重复性,并用于维生素C片剂中AA的含量测定,结果与药典方法一致.  相似文献   

10.
聚荧光素薄膜修饰电极对尿酸的电催化作用   总被引:2,自引:0,他引:2  
利用循环伏安法(CV)研究了聚荧光素薄膜修饰电极(PFSE)对尿酸(UA)的电催化作用.实验表明:在CH3COOH-CH3COONa(pH=4.7) 0.1mol/L NaCl体系中,PFSE对UA的氧化具有良好的电催化作用,催化氧化峰电流与UA的浓度在5.0×10-7~3.0×10-5mol/L范围内,具有良好的线性关系.检测限可达3.0×10-7mol/L.10次模拟样品平行测定结果的相对标准偏差为2.1%,可用于实际样品中尿酸的定量测定.  相似文献   

11.
采用滴涂法,将小牛胸腺DNA修饰到预处理的玻碳电极(GCE(ox))上,通过循环伏安(CV)、示差脉冲伏安(DPV)等方法研究了盐酸异丙嗪在DNA修饰GCE(ox)上的电化学行为.盐酸异丙嗪在DNA修饰电极上呈现准可逆的氧化还原过程.示差脉冲伏安实验中,盐酸异丙嗪的还原峰电流与其浓度在5.0×10-10-9.0 ×10-9 mol·L-1范围内呈良好的线性关系,线性相关系数为0.999,检出限为3.0×10-10 mol·L-1.将该修饰电极用于测定痕量的异丙嗪,获得良好的结果.  相似文献   

12.
研究了聚中性红(PNR)/碳纳米管(CNT)修饰玻碳电极(GC)的制备方法,并采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)在聚中性红/碳纳米管修饰电极(PNR/CNTE)上的伏安行为,以及在抗坏血酸(AA)存在下DA的测定条件.在含一定浓度AA的磷酸缓冲溶液(pH=6.0)中,DA的还原峰电流与浓度在2.6×10 5~1.0×10 3mol/L范围内呈线性关系,线性相关系数为=0.998 7,检测限为2.0×10 6mol/L.利用该修饰电极对样品进行检测,8次平行测定结果的相对标准偏差为1.8%,样品回收率在96.0%~104.3%范围内,满足微量分析的要求.  相似文献   

13.
采用循环伏安法直接制备了石墨烯修饰玻碳电极并对其进行了表征,研究了亚硝酸根在石墨烯修饰玻碳电极上的电化学行为.研究结果表明:石墨烯修饰电极对亚硝酸根的氧化有良好的电催化活性,在0.10 mol·L-1PBS缓冲液(pH值为7.0)中动态安培法检测亚硝酸根的线性范围为2.69×10-6~8.13×10-4 mol·L-1和8.13×10-4~8.56×10-3 mol·L-1,灵敏度分别为42.68和10.91 μA·(mmol·L-1)-1,检出限为8.68×10-7mol·L-1(3sb).利用该方法测定了土壤样中亚硝酸根的含量,结果令人满意.  相似文献   

14.
采用电化学沉积结合电化学衍生法制备了纳米氢氧化钴/镍修饰电极( Co-Ni( OH)n/CCE),研究了该修饰电极的电化学性质及其对葡萄糖的电催化活性.结果表明:该修饰电极对葡萄糖具有良好的电催化氧化活性.在优化实验条件下,线性方程分别为2.0×10-7~6.9×10-5 mol·L-1(灵敏度为249μA ·(mmol·L-1)-1)和6.9×10-5~1.0×10-3 mol·L-1(灵敏度为49.6μA·(mmol·L-1)-1),检出限为1.0×10-7 mol·L-1,响应时间小于5 s.  相似文献   

15.
制备了石墨烯-双壁碳纳米管/酸性黄9修饰玻碳电极(DG/AY/GCE),在浓度为0.1mol/L、pH为4.0的磷酸缓冲溶液中,探讨了鸟嘌呤(Guanine,GA)和尿酸(Uric acid,UA)在该修饰电极上的电化学行为。结果表明:GA和UA在该修饰电极上氧化电流可得到明显增强,过电位得以降低。利用计时电流法测定GA和UA,与GA和UA氧化电流呈线性关系的浓度范围分别为2.0×10-9~6.8×10-5 mol/L和5.0×10-9~9.5×10-5 mol/L,检测限(s/n=3)分别为6.67×10-10mol/L和1.67×10-9mol/L。该修饰电极已经成功应用于人类尿液中GA和UA的含量分析,结果令人满意。  相似文献   

16.
通过自组装得方法制备了巯基乙酸修饰的金电极.在0.10 mol·L-1的磷酸盐缓冲溶液中(pH=7.0),用循环伏安法和示差脉冲伏安法研究了对苯二酚在修饰电极上的电化学行为,在相对低的电位条件下,对苯二酚显示一对氧化还原峰.在1.0×10-6mol·L-1到3.0×10-3mol·L-1浓度范围内,氧化峰电流与对苯二酚的浓度成线性关系,相关系数是0.998,检测限为4.0×10-7mol·L-1.该修饰电极在间苯二酚存在的条件下,能被用于选择性检测对苯二酚,得到了令人满意的结果.  相似文献   

17.
用循环伏安法制备聚L-苯丙氨酸修饰玻碳电极,研究尿酸在聚L-苯丙氨酸修饰电极上的电化学行为,建立循环伏安法测定尿酸的新方法.在pH 4.0的磷酸盐缓冲溶液中,尿酸在聚L-苯丙氨酸修饰玻碳电极上出现一氧化峰,峰电位为Epa=+638 mV(相对于Ag/AgCl电极),氧化峰电流与尿酸浓度在5.00×10-7~5.00×10-5 mol/L范围内成线性关系,检测限:1.0×10 -7 mol/L.对1.0×10 -5 mol/L UA溶液平行测20次,其相对标准偏差为3.1%.用于尿液中尿酸的测定,结果满意.  相似文献   

18.
利用循环伏安法制备银掺杂聚L-天冬氨酸化学修饰电极.用循环伏安法研究对氨基苯酚在该电极上的电化学行为,建立测定对氨基苯酚的新方法.在pH=5.5的磷酸盐缓冲溶液中,对氨基苯酚在银掺杂聚L-天冬氨酸修饰电极上产生一对灵敏的氧化还原峰,峰电位分别为Epa=203 mV,Epc=129 mV(相对Ag/AgCl电极).用循环伏安法(CV)进行测定,氧化峰峰电流与对氨基苯酚的浓度分别在8.00×10-7~1.00×10-4 mol/L和1.00×10-4~5.00×10-4 mol/L范围内呈线性,检出限为1.0×10-7 mol/L.对5.0×10-5 mol/L对氨基苯酚溶液平行测30次,其相对标准偏差为6.9%,用于废水中对氨基苯酚的测定,结果满意.  相似文献   

19.
实验制备了二茂铁甲酸/L-半胱氨酸自组装金电极,并用循环伏安法和电化学阻抗予以表征,研究了该电极在磷酸氢钾-磷酸氢二钾溶液(pH=7.0)中的电化学行为,考察了介质、酸度对修饰电极伏安行为的影响.实验表明,该电极对抗坏血酸(AA)的电化学氧化具有明显的催化作用.用示差脉冲伏安法对AA进行了测定,其氧化电流于AA的浓度在2.52×10-5-6.31×10-3mol L-1范围内呈良好的线性关系,线性相关系数为0.9931,检出限为1.30×10-6mol L-1.  相似文献   

20.
本文选用1,2-乙二硫醇为连接剂,通过共价键将PVP保护的铂纳米粒子(Pt NPs)固定在金电极表面,制成铂纳米粒子/乙二硫醇修饰的金电极。在PH=7.0的环境下,利用差分脉冲伏安法(DPV)测定多巴胺(DA)。结果表明,在1.0×10-5~1.0×10-3mol/L范围内,峰电流与多巴胺浓度成线性关系,检测限为5.0×10-6mol/L。实验同时考察了抗坏血酸(AA)对测定结果的影响,结果显示在DA和AA混合液的DPV曲线上出现两个峰,故修饰电极能够在AA共存下选择性测定DA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号