首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了分析岩溶区土的弹性模量对共同作用体系的影响,建立岩溶地基—桩筏基础—钢框架核心筒结构三维有限元模型,对比分析桩间土弹性模量变化时,上部结构的动力响应情况。结果表明:桩间土弹性模量的变化对共同作用体系的动力响应有一定的影响,随着桩间土弹性模量的增加,上部结构加速度峰值、位移峰值、层间位移角峰值整体上有减小的趋势,位移峰值变化率最大为12.76%,加速度峰值和层间位移角峰值变化率都在10%以内;基础的弯矩和剪力减小。分析其原因是桩间土弹性模量的增大,增大了地基的刚度,使地基土在地震作用下的变形减小,对桩筏基础的约束增大,从而使上部结构的动力响应和基础的内力减小。  相似文献   

2.
采用子结构法,建立了频域内土-结构动力相互作用下的橡胶支座隔震结构的分析模型及相应的运动方程,通过数值仿真2个具有埋置刚性基础的剪切型基础隔震结构的地震反应,并选用多种地基土,较为系统地分析计算了不同地基土参数组合下结构的隔震效果和地震响应.结果表明,设置橡胶支座隔震层可以削弱土-结构动力相互作用对结构动力特性的影响,减小结构相对于场地运动的楼层位移和基底位移.同时,土-结构动力相互作用使橡胶支座隔震效果有所降低,且影响程度与上部结构刚度成正比,与地基土刚度成反比.  相似文献   

3.
为了研究边坡土钉支护在地震作用下的动力特性和工作性能,运用大型有限元软件ADINA,对支护结构建立了整体三维有限元计算模型,并进行了动力有限元模拟分析,研究内容包括水平地震作用下支护结构的土钉轴力响应、位移响应、加速度响应.计算结果表明:(1)地震使每排土钉轴力增大,且每根土钉轴力最大处增幅明显;(2)地震没有改变边坡潜在滑移面的位置;(3)地震作用下,坡顶的水平峰值位移和峰值加速度最大,说明坡顶附近土层的地震响应最激烈,所受的地震力也最大,较容易发生破坏.这些结论可为边坡土钉支护的抗震设计提供参考.  相似文献   

4.
为研究输电塔在土结相互作用(Soil Structure Interactions, SSI)和塔-线耦合作用影响下的抗震可靠度,提出了考虑SSI效应的输电塔-线耦合系统抗震可靠度分析方法. 建立考虑SSI效应的输电塔-线耦合系统简化力学模型,推导其在随机地震作用下的运动方程. 基于随机函数-谱表示方法模拟随机地震动加速度时程,对耦合系统进行随机地震动力响应分析. 以基于GF-偏差点集的样本分数矩最大熵法估计随机地震响应极值分布,并求解耦合系统抗震可靠度. 选取工程中某特高压输电塔-线体系作为研究对象,对本文方法的有效性进行验证. 结果表明,当塔底地基土为软弱土时,考虑SSI效应后,塔顶位移响应极值增大约46.59%,加速度响应极值增大约17.43%,结构失效概率增加约70.32%. 考虑塔-线耦合作用后,塔顶位移响应极值减小约0.51%,加速度响应极值增大约1.74%,结构失效概率减小约15.71%. 对于考虑SSI效应的输电塔-线耦合系统,塔底地基土越软,塔顶位移与加速度响应极值越大. 与蒙特卡洛法相比,本文方法求解的结构失效概率最大误差仅为9.97%,具有较高的精度和计算效率.  相似文献   

5.
采用振动台模型试验方法,对EL-Centro地震波作用下单舱地下综合管廊结构动力响应、土体动力响应以及土-结构相互作用机理开展研究。模型试验依托某实际工程为原型,按照1:15的比例尺缩,设计振动台模型试验,输入不同峰值加速度地震波,以此获得管廊结构以及周边土体的动力响应规律。试验结果表明:土体与管廊结构在振动过程中相互制约,存在明显的土-结构相互作用,在强震作用下管廊侧壁和土体出现脱离的情况,单舱管廊结构的运动始终保持了较好的整体性;管廊周边土体由于受到管廊侧壁的约束作用,土体发生不均匀位移或相对位移,动土压力分布形式错综复杂,土拱效应明显;在横向一致地震作用下,管廊结构横向应变随着地震波输入峰值加速度的增强而增大,其中管廊结构中部截面变形最为明显,各截面角点处的变形位移最大,是管廊抗震设计中需要重视的关键部位。  相似文献   

6.
为了研究地震作用下土钉+水泥土搅拌桩复合土钉墙在不同支护参数下的动力响应,利用大型有限元软件ADINA,对某基坑土钉+水泥土搅拌桩复合土钉墙建立了局部三维有限元模型,研究了土钉倾角、土钉长度、土钉水平间距、搅拌桩嵌入深度对边坡的位移响应、加速度响应、轴力响应的影响.结果表明:地震作用下,开挖面的水平位移峰值、水平加速度峰值、土钉轴力峰值随土钉倾角的增大而增大,随土钉水平间距的增大而增大,随土钉长度的增加而减小;增大搅拌桩嵌入深度开挖面水平位移峰值减小,但水平加速度峰值、土钉轴力峰值的减小并不明显.  相似文献   

7.
为研究土-桩-结构相互作用对独塔自锚式悬索桥动力特性及地震响应的影响规律,利用有限元软件Midas/Civil建立了2个空间有限元成桥状态模型,分别采用J.Penzien集中质量模型模拟的桩土边界和承台底部固结边界,并对结构进行了动力特性分析和不同地震工况下的非线性时程分析.研究结果表明,土-桩-结构相互作用延长了结构自振周期,且对主塔参与的振型影响很大.与基础固结模型相比,考虑土-桩-结构相互作用的结构在地震作用下的内力响应减小20%左右,而桥塔位移响应增大约50%,主梁位移响应增大约3%.因此,此类结构抗震设计时需基于不同控制目标选择不同的基础处理方式.  相似文献   

8.
在进行土体-框架结构的振动台模型实验中,测出了模型体系的加速度、位移和应变反应.首先分析了实验各阶段系统的自振频率及阻尼比的变化情况,然后着重比较了各工况下框架结构的加速度、层间位移和应变反应规律,并与刚性地基实验进行了对比.实验结果表明,相对于仅有水平激振,竖向激振的参与可使结构的反应增加,且位移、应变反应的增量要大于加速度反应的增量;桩体应变要小于框架上的应变;基础上的加速度反应要大于土表反应.土-结构相互作用下的测试结果普遍要大于刚性地基情况下的结果,并且加速度峰值、层间位移峰值沿楼层的变化趋势也不相同,基于刚性地基假定下的计算结果可能偏于不安全,对于结构的抗震设计考虑土-结构相互作用的影响很有必要.  相似文献   

9.
以某海底隧道实际工程为背景,采用地下结构地震时程分析方法,基于有限元软件建立了海水-土体-隧道结构相互作用的数值计算模型,开展了复杂地质条件下大跨度海底隧道地震动力响应研究,重点分析了不同加速度峰值地震波作用下海底隧道的位移、变形、加速度和结构内力等响应参数的变化规律。分析结果表明:地震作用下该海底隧道主要发生整体位移,结构变形较小;地震作用对隧道结构侧墙和中隔墙处的弯矩和剪力有明显增大作用,所以在前期设计中时应适当考虑地震动力作用,局部增设抗震措施;随着地震波峰值加速度的增大,海底隧道结构的位移、变形、加速度、内力等动力响应也越大。研究成果可以为大跨度海底隧道工程抗震安全性研究提供参考。  相似文献   

10.
为了研究兴教寺玄奘塔在地震作用下的动力响应,考虑了地震作用的随机性并引入地基阻抗系数,分析了砖石古塔与地基相互作用系统频域响应的计算模型,通过线性等效的方法,推导了结构响应的功率谱密度函数。并结合玄奘塔的场地与地基条件,建立了玄奘塔地基与结构相互作用体系的计算模型,按场地条件输入三向地震波,计算了结构的频域动力响应,给出了各楼层顶的位移放大系数及加速度功率谱。结果表明,影响玄奘塔位移放大系数及加速度功率谱响应的频带均较宽,其中南北方向及竖向位移响应、底层的竖向加速度的频域响应具有两个峰值,且响应的峰值所在的楼层为第3层及顶层。因此,玄奘塔在地震作用下结构的危险截面位于3层及顶层,与砖石古塔的历史震害规律一致。  相似文献   

11.
格构锚固边坡地震响应的振动台试验研究   总被引:3,自引:0,他引:3  
设计并完成比例尺为1∶8的边坡大型振动台模型试验,研究格构锚杆框架支护边坡在汶川波水平向、竖直向和水平竖直双向激振下的动力响应特性.研究结果表明:3种激振方式都会使边坡产生水平和竖直向加速度动力响应,且呈现出明显的非线性特征.水平向激振主要产生水平向加速度放大效应,边坡上方动力响应强度比中下方动力响应强度明显,内部动力响应强度比坡面动力响应强度明显;竖直向激振主要产生竖直向加速度放大效应,边坡中上方坡内动力响应强度大于坡面动力响应强度,边坡下方坡内动力响应强度则稍弱于坡面动力响应强度;加速度动力响应峰值放大系数(PGAA)随坡高也呈显著的非线性特征:在水平向激振下,水平和竖直向PGAA都是随坡高非线性增大;在竖直向激振下,水平向PEAA和激振加速度峰值AZmax≥0.400g时的竖直向PGAA随坡高非线性增大;在水平和竖直双向激振下,边坡中下方水平向PGAA和AXmax≥0.400g时竖直向PGAA随坡高非线性增大.3种激振方式下动位移响应主要出现在水平方向上,且呈现出非线性特征.水平向或水平竖直双向激振下,主要产生水平方向的永久位移,其量值接近但方向相反;竖直向激振下产生的水平和竖直向永久位移较小.3种激振方式下主要产生水平方向动土压力响应,响应程度比较接近,呈现出非线性特征,动土压力峰值的最大值都出现在坡中.  相似文献   

12.
利用非线性有限元动力分析软件ANSYS/LS-DYNA,研究了单层圆柱面网壳在地震作用下的动力稳定性问题,指出当加速度峰值较小时,网壳的节点位移响应随地震加速度峰值增加呈线性增加,结构的变形主要是弹性变形,随着加速度峰值的加大,位移响应增加速度加快,部分杆件进入塑性,当达某一特征值时,位移响应大幅度增加,此时结构丧失了稳定性,沿结构不同方向输入地震波时,X方向首先发生失稳。  相似文献   

13.
筒仓-散体结构体系动力特性研究现状及发展趋势   总被引:1,自引:0,他引:1  
为确保筒仓-散体结构体系的长期安全储备和运行,从散体参与地震响应的有效质量、散体与仓体的相互作用、地震作用下筒仓结构的力学特性三个方面系统地归纳总结了筒仓-散体结构体系的抗震研究发展历程和现状。并结合隔震减振技术在筒仓-散体结构体系的研究现状,指出进一步精确并系统确定地震作用下筒仓内部散体参与振动的有效质量应是今后研究的重点,建议加快推进筒仓-散体结构体系抗震减振研究,建立适用于筒仓-散体结构体系的隔震减振理论体系,并对其发展趋势和方向进行展望。  相似文献   

14.
针对目前加筋土挡墙设计和施工中筋材布设方式大多为等长形的问题,提出一种倒梯形的筋材布设方式,并基于挡墙位移分区理论和有限差分Flac3D数值模拟,建立加筋土挡墙三维分析模型,探讨不同峰值加速度下3种加筋土挡墙对位移、水平土压力、筋材拉应力及潜在破裂面的影响。结果表明,随峰值加速度增大,挡墙位移逐渐增大,同一荷载作用下,改变筋材布设方式,侧向水平位移减少9.3%,竖向沉降减少5.3%;3种形式挡墙水平土压力相差不大,最大水平土压力分布在挡墙的中下部;筋材拉应力随峰值加速度的增大,沿墙高从单峰型转化为双峰型分布,最大值位于挡墙中下部;潜在破裂面填土区破裂带的形状与筋材的布设方式有关。所提出的倒梯形筋材布设方式对加筋土挡墙的抗震效果更好,可为施工设计中加筋土挡墙筋材布设提供参考。  相似文献   

15.
围护墙多功能减震结构是一种新型减震结构,具有调频质量减震和阻尼耗能减震等多种耗能减震功能。为了研究此减震结构在地震作用下的响应特性,本文建立了减震结构在地震作用下的动力方程,推导了减震结构地震响应的传递函数、频谱密度,得到主要影响参数对该结构减震效果的影响,并采用模拟地震振动台进行普通框架结构和此结构的对比验证,通过加速度(位移)功率谱密度和加速度(位移)频响幅值反映出各设置工况下的减震规律。结果显示,与普通框架结构相比,该结构的功率谱密度和频响幅值均有不同程度的减小,减震幅度最大可达39.97%,表明该结构体系在地震波作用下具有很好的减震效果,并在参数设置合理的情况下,减震效果更佳。  相似文献   

16.
为探究不同刚度低桩承台结构重力式码头地震响应规律,首先利用ABAQUS建立了某重力式码头的精细化有限元模型,其次改变低桩承台结构的桩数、桩径及混凝土强度等级,来获取不同低桩承台的刚度,最后输入三向空间地震动,以此探究低桩承台重力式码头随低桩承台刚度变化的地震响应规律。分析表明:当桩-承台结构刚度改变时,结构整体水平位移随桩径增大而减小、随混凝土强度增大而增大、随桩数增加而增大;结构峰值加速度随桩数增加而增大、随桩径增大而减小;桩侧动土压力远大于码头后动土压力,桩侧动土压力随桩数增加而增大、随桩径增大而增大、随混凝土强度等级提高而减小。  相似文献   

17.
为研究强震作用下液化场地桩-土非线性动力相互作用特性,依托海文大桥实体工程,利用Midas/GTS有限元软件,建立了桩-土相互作用模型,分析了地震动峰值为0.35g时4种类型地震波作用下桩身加速度、桩身位移、桩身弯矩及剪力等动力响应,并根据计算结果对桩基在强震作用下的安全进行了评价.结果表明:在0~10 m的可液化粉细砂层,桩身加速度峰值迅速增加,并在桩顶处达到最大,桩顶加速度出现峰值的时刻与桩底相比均呈现滞后现象,最大滞后时间为2.14 s;不同类型地震波作用下,在可液化的粉细砂层,Kobe波产生的桩顶位移最大,El-Centro波次之,5010波产生的桩顶位移最小;桩身弯矩峰值均出现在液化层和非液化层分界处,桩身剪力峰值均出现在地下0~10 m的可液化土层之间,Kobe波作用时,桩身弯矩和剪力峰值均最大,El-Centro波次之,5010波最小;地震动强度为0.35g,5010、5002、El-Centro地震波作用时,桩身弯矩及剪力峰值均未超过桩身截面抗弯和抗剪承载力,Kobe地震波作用时,桩身弯矩峰值小于桩身截面抗弯承载力,而桩身剪力峰值超出桩身截面抗剪承载力的68.6%,桩基础桩身强度不满足抗震要求,建议增加桩基础纵向配筋.  相似文献   

18.
基于混凝土材料的动力损伤特性,建立了其弹塑性损伤本构模型,将该模型应用于强震区某大断面隧道工程,分析了不同地震波入射方向、地震波强度和围岩条件下隧道结构的地震响应与动力损伤规律,探讨了大断面隧道结构的地震损伤特性和破坏机理。研究结果表明:地震波垂直、水平两种入射条件下两者衬砌的压主应力、加速度响应形态相似,但水平入射条件下衬砌结构的应力、加速度响应相较于垂直入射条件更加剧烈;水平入射时衬砌的动力损伤远大于垂直入射时的动力损伤,且动力损伤主要集中于拱腰与墙脚处;围岩条件对隧道衬砌结构的拉主应力响应以及动力损伤有显著影响,V级围岩条件下衬砌结构的最大拉应力是IV级围岩下的5.7倍;隧道结构的地震响应与动力损伤特性也受地震波强度的影响,随着地震波强度增大,应力、加速度响应峰值以及最大动力损伤量均呈现非线性增大趋势,动力损伤随之加剧且由拱腰和墙脚处逐渐向外扩展;在强震区软岩隧道抗震设计以及运营期间震后加固修复应着重注意动力损伤集中的部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号