首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
结合国内某厂6机架热连轧精轧机组实际条件,选取典型产品制定了带钢轧制过程中板形急停后的测量实验方案.根据此方案进行了测量实验,得到带钢机架间板凸度实测值.结合轧制过程中各道次轧制力、弯辊力及辊形曲线等实际数据,采用基于影响函数法的四辊轧机辊系弹性变形软件针对该典型产品的板形控制过程进行计算,分析了轧辊平均凸度计算值与设定值之间存在偏差的原因.将带钢机架间横向厚度分布的计算值与实测值进行比较,二者吻合较好.  相似文献   

2.
热带钢轧机板形综合控制技术开发   总被引:6,自引:0,他引:6  
为了改善热带钢轧机的板形控制性能、提高产品的板形质量、降低生产消耗,针对工作辊可轴向窜动的热带钢轧机,在大量有限元模拟基础上开发了特殊的工作辊辊形技术和支持辊辊形技术及相应的板形控制模型,包括过程控制系统(L2级)的板形设定控制模型和基础自动化系统(L1级)的弯辊力前馈控制模型、凸度反馈控制模型及平坦度反馈控制模型.在经历离线模型建立、在线编程和调试等诸多复杂过程后,辊形技术及板形控制模型在工业宽带钢热轧机上进行了长期、稳定的应用.生产实践表明,采用这些板形控制技术后,凸度偏差控制在±18 μm的比例超过93%,平坦度偏差控制在±25 IU的比例超过94%,同时实现了自由规程轧制.  相似文献   

3.
梅钢1422轧机经改造后,板形控制水平有了明显提高,但轧制到计划的中尾部便出现不稳定,产品的凸度和平直度不能满足市场要求,尤其是供冷轧基板的大凸度要求,而且板形模型也无法正常工作.为解决这一问题,在理论分析的基础上,通过对精轧机组F1~F3机架CVC工作辊辊型曲线优化以及F4~F6机架工作辊辊型的优化,使得带钢凸度命中率由原来的87%左右提高到98%,而且降低了工作辊的辊耗,提高了一个计划的同宽公里数与总公里数.同时由于提高了轧制稳定性,稳定批量生产出1.6mm×1185mm的箱板.  相似文献   

4.
在采用影响函数法分析轧辊弹性变形的基础上,提出一种热带轧机工作辊初始辊型曲线的设计算法.指出合理分配精轧机组各机架带钢入、出口凸度范围对工作辊初始辊型曲线设计具有重要的作用,并提出一种各机架带钢入、出口凸度范围的确定策略.采用提出的算法对某厂1 250 mm热带轧机精轧机组优化了其工作辊初始辊型曲线,并进行了现场实际生产实验.实验结果表明:带钢的实测凸度满足该厂目标凸度的要求,证明了该算法的合理性.  相似文献   

5.
热轧精轧机组下游机架既要实现板形控制,又要均匀化轧辊磨损以实现自由规程轧制.同时,硅钢、集装箱用钢等专用钢边部减薄严重,常规的板形控制手段难将凸度控频侥勘曛开发了非对称工作辊,辊身一端带特殊曲线,上下工作辊成反对称放置.改变轧辊的轴向位置,带钢凸度变化量可超过150μm.设计了针对该工作辊的特定窜辊策略,带钢边部板形可得到有效控制.改善了轧辊磨损辊形,有利于实现自由规程轧制.在鞍钢1700ASP生产线上的使用实绩表明,采用非对称工作辊后,硅钢凸度降低了29.8%,高强度钢的凸度可降至50μm以下,且凸度控制稳定.  相似文献   

6.
提出了一种分析热轧带钢金属横向流动问题的新方法.首先使用ANSYS软件建立辊系-轧件静力学耦合模型,计算并提取变形后工作辊有载辊形曲线;然后使用ANSYS/LS-DYNA建立动力学分析模型,采用已得到的有载辊形曲线,模拟带钢轧制过程,求解得到沿带钢全宽的横向流动状态;并进一步分析了弯辊力、工作辊辊形以及来料凸度变化等因素对带钢金属横向流动的影响,得到基于插值计算的带钢横向流动计算模型.有限元方法验证了计算模型的可靠性.  相似文献   

7.
提出了一种分析热轧带钢金属横向流动问题的新方法.首先使用ANSYS软件建立辊系-轧件静力学耦合模型,计算并提取变形后工作辊有载辊形曲线;然后使用ANSYS/LS-DYNA建立动力学分析模型,采用己得到的有载辊形曲线,模拟带钢轧制过程,求解得到沿带钢全宽的横向流动状态;并进一步分析了弯辊力、工作辊辊形以及来料凸度变化等因素对带钢金属横向流动的影响,得到基于插值计算的带钢横向流动计算模型.有限元方法验证了计算模型的可靠性.  相似文献   

8.
针对传统热轧机板形设定模型仅根据带钢头部的要求来设定弯辊力而可能导致中尾部所需弯辊力超出设备能力极限的问题,提出一种弯辊力优化设定策略。该策略对带钢全长轧制过程进行考虑,根据最近一次同钢种同规格带钢轧制时实际轧制力与凸度的变化,预算本卷带钢全长板形控制所需要的弯辊力调节量,结合弯辊设备的能力极限,为带钢中尾部板形控制预留必要的弯辊力。在上海梅山钢铁股份有限公司热轧厂1780热连轧生产线上的实际应用效果表明,采用该策略后基本消除了带钢尾部中间轧破现象,大幅提高了热轧带钢中尾部轧制的稳定性。  相似文献   

9.
CSP热连轧机板形的调控特性   总被引:1,自引:0,他引:1  
利用ANSYS有限元模型,对某厂1.80 m紧凑式热带工艺(CSP)热连轧机基本板形调控特性进行分析,针对CSP同宽轧制的特点,采集生产现场辊形数据.研究结果表明:工作辊的磨损情况与常规热轧的磨损情况有所不同;CSP热连轧机工作辊的磨损造成辊缝四次凸度随窜辊值发生明显的非线性变化,这是工作辊服役后期复合浪频繁生成并导致换辊的主要原因;工作辊的磨损降低了低凸度轧机的控制能力,易导致带钢凸度偏大,若继续轧制窄规格板形,则可保持凸度,控制稳定性.  相似文献   

10.
冷轧薄带钢工作辊边部接触研究   总被引:2,自引:0,他引:2  
为研究工作辊接触对冷轧带钢生产的影响,用影响函数法建立模型,并用现场生产数据模拟计算了四辊轧机的辊系变形.通过计算得到的接触压力、带钢厚度、张应力等分布数据分析了冷轧薄带时发生工作辊接触现象对轧制压力、出口厚度、出口张应力以及板形等的影响.结果表明,工作辊接触使带钢边部轧制压力降低,工作辊与支撑辊间接触压力增大.工作辊接触使带钢凸度和横向厚差减小,对降低边部减薄有利;使出口张应力分布更加均匀,减小了边浪,提高了带钢的平直度.  相似文献   

11.
建立了宽带铜6辊紧凑式冷轧机组弯辊力设定综合模型,以提高带铜板形质量.采用大型通用有限元软件建立了辊系弹性变形三维有限元模型,结合工业轧机整体取样,分析了双机架冷轧机多轧程各道次带铜板形比例凸度变化,确定了板形的主要影响因素;以板形良好为目标、双机架弯辊力的相对余量均匀作为约束条件,建立了基于遗传算法的工作辊和中间辊的弯辊力设定数学模型.本模型应用于1500mm6辊UCM大型工业轧机连续轧制试验取得明显改善带钢板形和提高对带钢来料凸度波动变化适应能力的实际效果.  相似文献   

12.
在某冷轧厂收集到的平直度仪记录数据基础上,结合冷轧带钢平直度测量原理,在VB6.0环境下采用VBA技术开发了冷连轧带钢平直度数据离线动态显示分析软件,将轧机出口处平直度仪实时记录数据和末架轧辊转速等数据离线动态显示.根据板形识别原理,对板形进行识别统计,统计结果和现场实际情况相吻合.该软件对评估平直度控制效果、分析和解决冷连轧带钢板形问题具有重要意义.  相似文献   

13.
在采用影响函数法分析四辊轧机轧辊弹性变形的基础上,以某1 250 mm热带轧机为对象,研究了四辊热带轧机支撑辊辊型曲线各种影响因素对辊间压力及带钢出口凸度的影响规律,为支撑辊辊型曲线优化设计提供了重要的理论依据.研究结果表明:倒角长度、倒角高度、倒角类型以及辊身凸度均对辊间压力分布和带钢出口凸度具有较大的影响,在进行辊型曲线优化设计时应根据现场实际选择合适曲线类型和参数范围,同时保证轧机的凸度控制能力满足生产要求.  相似文献   

14.
以带钢宽度为坐标的带钢横截面与带钢平坦度控制密切相关.常规的带钢横截面表示方法不能精确描述不规则带钢横截面情况,影响板形质量及控制精度.建立多参数带钢横截面表示方法,可以对带钢横截面做更准确全面的描述.以CVC轧机为例,利用ANSYS有限元模型对各横截面参数之间的耦合关系进行分析,提出各板形因素的综合控制以及与平坦度的解耦控制是进一步提高热轧带钢板形控制精度的难点亦是关键所在.  相似文献   

15.
随着板带轧制技术的发展 ,板形控制技术也不断完善 ,但作为其中一个重要组成部分的轧辊磨损预报模型 ,目前尚无精确的理论模型以资利用。本文从摩擦学原理出发 ,建立了工作辊磨损分布的理论计算模型 ,计算结果与实测数值吻合较好。建立在此基础上的磨损预报模型为板形控制模型提供了可靠的依据。  相似文献   

16.
冷连轧机组弯辊力自动设定的实现   总被引:3,自引:0,他引:3  
针对大型宽带钢冷连轧机组广泛采用的液压弯辊技术,深入分析了弯辊力对于板形的调控机理.在分析轧辊辊形、带钢宽度和轧制力等因素对弯辊力设定值影响的基础上,建立弯辊力自动设定模型,并得到了现场实测结果的验证.该模型成功地投入运行,实现了冷连轧机弯辊力的计算机自动设定.  相似文献   

17.
为研究某2250 mm热连轧生产中非对称因素对轧件非对称板形(如楔形和单边浪)的影响,利用基于影响函数法的辊系变形模型、张应力模型和简化的轧制压力横向分布模型相结合的方法,建立了集轧机和轧件为一体的非对称板形计算模型。研究结果表明:来料楔形对轧件楔形的影响明显超过其对轧件平坦度的影响;上游机架和下游机架刚度非对称分别主要影响轧件楔形和平坦度;40益以内的轧件温度不对称分布对轧件平坦度影响较小,对出口楔形的影响可以忽略;轧件跑偏对楔形和平坦度均有显著影响。根据板形良好条件确定了各非对称参数的允许范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号