首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文通过射频磁控反应溅射实现高质量的AlN绝缘栅层,采用感应耦合等离子体(ICP)刻蚀出凹栅槽结构,将MIS结构和凹栅槽结构的优点相结合,研制成功AlGaN/GaN凹栅槽结构MIS HEMT器件,在提高器件栅控能力的同时,降低栅极漏电,提高击穿电压。器件栅长0.8μm,栅宽60μm,测得栅压为+5V时最大饱和输出电流为832mA/mm,最大跨导达到210mS/mm,栅压为-15V时栅极反向漏电为6nA/mm。  相似文献   

2.
为了抑制GaN高电子迁移率晶体管(HEMT)的栅极漏电,提出了一种0.5μm栅长的GaN金属氧化物半导体(MOS)高电子迁移率晶体管结构。该结构采用势垒层部分挖槽,并用高介电常数绝缘栅介质的金属氧化物半导体栅结构替代传统GaN HEMT中的肖特基栅。基于此结构制备出一种GaN MOSHEMT器件,势垒层总厚度为20nm,挖槽深度为15nm,栅介质采用高介电常数的HfO_2,器件栅长为0.5μm。对器件电流电压特性和射频特性的测试结果表明:所制备的GaN MOSHEMT器件最大电流线密度达到0.9 A/mm,开态源漏击穿电压达到75 V;与GaN HEMT器件相比,其栅极电流被大大压制,正向栅压摆幅可提高10倍以上,并达到与同栅长GaN HEMT相当的射频特性。  相似文献   

3.
以环氧树脂(Eproxyresin)为栅绝缘层材料,并三苯(Anthracene)为有机半导体载流子传输层,分别利用旋涂及真空掩蔽蒸发,在以铜为栅极的基底之上成功研制了有机薄膜场效应晶体管(OTFT),经测试得出器件的电子迁移率为2.34×10-2 cm2/(V·s),跨导为0.49 μs.  相似文献   

4.
由于碳纳米管具有独特的结构和性能,因而一直受到人们的关注.对于包括碳纳米管场效应管在内的分子元件的研究方面尤其令人注目.笔者研究了具有电解液栅的碳纳米管场效应晶体管,研究中所用的碳纳米管是用热灯丝化学气相沉积法(CVD)合成的.衬底材料是平面玻璃,Fe/Ni混合物用作催化剂.对具有Ag电极的多壁碳纳米管晶体管作了优化设计制造,并利用KCl溶液作为栅极.实验结果表明,电解液栅型碳纳米管晶体管(FET)呈现出良好的电流-电压特性曲线.在栅压2 V时,其跨导约为0.5 mA/V.并对获得的研究结果进行了讨论.  相似文献   

5.
为了研究纳米尺度器件中量子力学效应对传输特性及动态特性的影响,在器件模拟软件TAURUS中实现了量子修正的漂移扩散模型(QDD),并对具有负栅极-源漏极交叠结构的超薄沟道双栅器件进行了数值模拟。结果显示:非对称栅压的控制方法使得器件具有动态可调的阈值电压,能够动态地适应高性能与低功耗的要求。通过优化栅极与源漏区的交叠长度可以降低栅极电容,从而提高器件的动态特性,提高电路的工作速度。  相似文献   

6.
为了对纳米尺度器件中量子力学效应对传输特性及动态特性的影响进行研究,该文在器件模拟软件TAURUS中实现了量子修正的漂移扩散模型(QDD),并对具有负栅极源漏极交叠结构的超薄沟道双栅器件进行了数值模拟。结果显示非对称栅压的控制方法使得器件具有动态可调的阈值电压,能够动态地适应高性能与低功耗的要求。通过优化栅极与源漏区的交叠长度可以降低栅极电容,从而提高器件的动态特性,提高电路的工作速度。  相似文献   

7.
描述了一种与ONO反熔丝现场可编程门阵列(FPGA)匹配的高压nMOSFET的设计.该器件采用中国电子科技集团公司第五十八研究所晶圆的1.0μm 2P2M ONO反熔丝工艺生产实现.该工艺中,通过一次离子注入和高温推进实现了深结HVNwell;通过将高压注入与栅极多晶保持0.2μm的间距解决了增加结深、提高速度与降低穿通击穿电压的矛盾;通过一次离子注入实现了高压nMOSFET阈值电压的调整.测试结果表明:高压nMOSFET的击穿电压达到21~23 V,远大于ONO反熔丝13.5 V的编程电压;饱和电流为4.32 mA,与工艺改进前相比饱和电流明显增大,工作速度得到提升,满足反熔丝FPGA工作频率的要求;阈值电压为0.78 V,与常压器件兼容.  相似文献   

8.
利用紫外曝光光刻技术和精简的半导体加工工艺,用一步光刻制备了以HfO_2为高κ栅介质,NiGe为肖特基源、漏极的Ge-pMOSFET器件,并在栅极中引入厚度1 nm的Si层对HfO_2和Ge接触界面进行了钝化处理.器件的电学特性测试结果表明,Si钝化效果显著,不仅可确保HfO_2有较高的κ值(22),约为钝化前(κ=10)的两倍,还提高了器件的开启速度和开关比;器件亚阈值摆幅降低为钝化前的50%,开关比从钝化前的105提高至770,提高了约7倍,表明Si钝化是提高器件性能的关键.探讨了Ge-pMOSFET器件呈现双极性的原因,认为肖特基源、漏极在正向栅压下易击穿是导致该现象的主要因素.  相似文献   

9.
随着半导体器件特征尺寸的不断减小,传统的浮栅型存储器件逐渐接近其物理和技术的极限,多晶硅-氧化物-氮化物-氧化物-硅(SONOS)型电荷存储器件以其低电压、小尺寸及良好兼容性等特点成为近年来半导体行业研究的热点.但是,写入/擦除速度与数据保持性能之间的平衡问题一直制约着SONOS型存储器件的发展.为了解决这一问题,本文利用脉冲激光沉积系统制备了叠层薄膜基电荷陷阱存储器件,其中SiO_2作为隧穿层,叠层ZrO_2/Al_2O_3作为电荷存储层,Al_2O_3作为阻挡层,并对器件的电荷存储性能做了系统分析.利用透射电子显微镜(TEM)表征了器件的微观结构,采用4200半导体参数分析仪测试了器件的电学性能,包括存储窗口、写入/擦除速度及数据保持性能.研究结果表明,存储器件具有良好的电荷存储性能.当栅极扫描电压为±2V时,存储窗口仅为0.9V,随着电压增加到±6和±8V时,存储窗口分别达到3和4.4V;+8V,5×10~(-5) s的写入操作下,平带偏移量达到1V;室温,85和150℃测试温度下,经过1×10~5 s的数据保持时间,器件的存储窗口减小量分别为5%,10%和24%.优异的电学性能主要归功于ZrO_2和Al_2O_3之间的深能级界面陷阱及层间势垒.因此,采用ZrO_2/Al_2O_3叠层薄膜结构作为电荷存储层,具有良好的市场应用前景.  相似文献   

10.
对两种T型电子波导器件即遥控栅量子晶体管和中间栅量子晶体管进行了理论研究。通过求解电子波函数分析了器件的输运性质,证明了器件中栅极对电导的调制效应,即器件的晶体管功能。同时,对多模效应的研究表明,多模的相关会减弱器件的干涉效应,从而影响器件的功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号