首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了抑制GaN高电子迁移率晶体管(HEMT)的栅极漏电,提出了一种0.5μm栅长的GaN金属氧化物半导体(MOS)高电子迁移率晶体管结构。该结构采用势垒层部分挖槽,并用高介电常数绝缘栅介质的金属氧化物半导体栅结构替代传统GaN HEMT中的肖特基栅。基于此结构制备出一种GaN MOSHEMT器件,势垒层总厚度为20nm,挖槽深度为15nm,栅介质采用高介电常数的HfO_2,器件栅长为0.5μm。对器件电流电压特性和射频特性的测试结果表明:所制备的GaN MOSHEMT器件最大电流线密度达到0.9 A/mm,开态源漏击穿电压达到75 V;与GaN HEMT器件相比,其栅极电流被大大压制,正向栅压摆幅可提高10倍以上,并达到与同栅长GaN HEMT相当的射频特性。  相似文献   

2.
以高纯锌粉为原料,采用气相反应法制备了四角状氧化锌纳米针.利用丝网印刷技术结合光刻工艺组装金属网前栅三极结构场致发射显示器件.场发射测试结果表明,器件具有明显的栅控特性.器件的开启栅压为270 V,当栅极电压为600 V时,阳极电流高达2.75 mA,栅极漏流仅为0.43 mA,测量的峰值亮度为2 300 cd/m2.  相似文献   

3.
为了研究纳米尺度器件中量子力学效应对传输特性及动态特性的影响,在器件模拟软件TAURUS中实现了量子修正的漂移扩散模型(QDD),并对具有负栅极-源漏极交叠结构的超薄沟道双栅器件进行了数值模拟。结果显示:非对称栅压的控制方法使得器件具有动态可调的阈值电压,能够动态地适应高性能与低功耗的要求。通过优化栅极与源漏区的交叠长度可以降低栅极电容,从而提高器件的动态特性,提高电路的工作速度。  相似文献   

4.
为了对纳米尺度器件中量子力学效应对传输特性及动态特性的影响进行研究,该文在器件模拟软件TAURUS中实现了量子修正的漂移扩散模型(QDD),并对具有负栅极源漏极交叠结构的超薄沟道双栅器件进行了数值模拟。结果显示非对称栅压的控制方法使得器件具有动态可调的阈值电压,能够动态地适应高性能与低功耗的要求。通过优化栅极与源漏区的交叠长度可以降低栅极电容,从而提高器件的动态特性,提高电路的工作速度。  相似文献   

5.
运用半导体物理理论和功率器件模拟软件(SILVACO-TCAD),研究了新型宽禁带材料SiC槽栅结构IGBT功率半导体器件的电学特性,模拟了不同厚度和掺杂浓度漂移层和缓冲层的IGBT器件的阈值电压、开关特性和导通特性曲线,并分析了漂移层和缓冲层厚度及掺杂浓度对电学特性的影响。结果表明,当SiC-IGBT功率器件漂移层和缓冲层厚度分别为65 μm和2.5 μm,掺杂浓度分别为1×1015和5×1015cm-3时,得到击穿电压为3400 V,阈值电压为8 V。  相似文献   

6.
由于碳纳米管具有独特的结构和性能,因而一直受到人们的关注.对于包括碳纳米管场效应管在内的分子元件的研究方面尤其令人注目.笔者研究了具有电解液栅的碳纳米管场效应晶体管,研究中所用的碳纳米管是用热灯丝化学气相沉积法(CVD)合成的.衬底材料是平面玻璃,Fe/Ni混合物用作催化剂.对具有Ag电极的多壁碳纳米管晶体管作了优化设计制造,并利用KCl溶液作为栅极.实验结果表明,电解液栅型碳纳米管晶体管(FET)呈现出良好的电流-电压特性曲线.在栅压2 V时,其跨导约为0.5 mA/V.并对获得的研究结果进行了讨论.  相似文献   

7.
设计了一种新型图形化SOI(pattemed-Silicon-On-Insulator)LDMOSFET(lateral doublediffused MOSFETs)结构,埋氧层在沟道下方是间断的.工艺和性能模拟分析表明,此结构具有SOI器件低泄漏电流和低输出电容的特性,而且能抑制自加热效应和浮体效应.当漂移区长度为3μm时,开态击穿电压可达到30V、关态电压为71V、截止频率6.2GHz、最大振荡频率20GHz,2GHz时、栅偏压3V时的输出功率为0.8W/mm、功率增益为28dB.这些电学参数适合2G、60V无线通讯基站功率放大器的要求.  相似文献   

8.
为了提高SOI(silicon on insulator)器件的击穿电压,同时降低器件的比导通电阻,提出一种槽栅槽源SOI LDMOS(lateral double-diffused metal oxide semiconductor)器件新结构.该结构采用了槽栅和槽源,在漂移区形成了纵向导电沟道和电子积累层,使器件保持了较短的电流传导路径,同时扩展了电流在纵向的传导面积,显著降低了器件的比导通电阻.槽栅调制了漂移区电场,同时,纵向栅氧层承担了部分漏极电压,使器件击穿电压得到提高.借助2维数值仿真软件MEDICI详细分析了器件的击穿特性和导通电阻特性.仿真结果表明:在保证最高优值的条件下,该结构的击穿电压和比导通电阻与传统SOI LDMOS相比,分别提高和降低了8%和45%.  相似文献   

9.
对环栅纳米线结构的隧穿场效应晶体管进行建模分析, 给出电流解析模型, 证明隧穿场效应管有良好的亚阈特性。研究发现, 环栅纳米线隧穿场效应管的亚阈值斜率SS的大小与圆柱体硅直径dnw、环栅氧化层厚度tox以及漏电压Vdd的变化规律均成正比, 即圆柱体硅直径dnw、环栅氧化层厚度tox和漏电压Vdd越小, 亚阈区的性能越好。这一模型的研究为场效应晶体管在低功耗电路中的应用打下良好基础。  相似文献   

10.
研究一种具有部分重叠双栅结构MOSFET器件模型,并将其与类似的分裂双栅结构MOSFET及普通栅结构MOSFET器件进行比较,利用MEDICI软件对该结构进行仿真.通过仿真可知:部分重叠双栅MOSFET器件通过沟道电场的调节,可降低短沟效应和等效栅电容、提高击穿电压,跨导可由栅压调节,阈值电压随沟道缩短而下降的变化率在文中讨论的3种结构中最小.  相似文献   

11.
为了简化后期栅极驱动电路设计、降低成本,工业界对增强型高电子迁移率晶体管的需求与日俱增。采用p型栅结构制备增强型器件的方法是目前极有前景的一种增强型方法。该方法致力于提高器件的正向阈值电压和输出饱和电流,通过Silvaco TCAD软件调节AlGaN势垒层厚度及其Al组分,仿真器件转移特性曲线和输出特性曲线。将AlGaN势垒层厚度优化为20 nm,Al组分优化为0.27,使器件具有更大的阈值电压和输出饱和电流。并通过仿真器件能带结构和AlGaN/GaN沟道中电子浓度,进一步分析器件结构影响其性能的物理机制。结果表明,Al GaN势垒层厚度及其Al组分增加,则器件阈值电压减小,输出饱和电流增加。器件阈值电压与关态时能带结构有关,输出饱和电流与开态时AlGaN/GaN沟道电子浓度有关。  相似文献   

12.
高压抗噪声干扰MOS栅驱动电路的设计   总被引:1,自引:0,他引:1  
设计了一种高压抗噪声干扰MOS栅驱动电路,能有效抑制开关转换过程中产生的dv/dt噪声,消除高压电路工作过程中可能出现的误触发,提高系统的稳定性和可靠性.采用共模反馈从而使电路结构简单,同时采用窄脉冲触发式控制降低了功耗.本电路可以集成在高压集成电路(HVIC)中.采用某公司高压600V0.5μm BCD工艺模型,通过Cadence仿真验证表明:本电路可有效滤除dv/dt噪声,被消除的dv/dt噪声最高可以达到60V/ns,同时被消除的失调噪声可以达到20%,保证了高压栅驱动电路稳定、可靠地工作.  相似文献   

13.
针对可控硅(SCR)结构的静电放电(ESD)防护器件触发电压高、电压回滞幅度大以及开启速度慢等问题,设计了一种RC触发内嵌PMOS DDSCR(DUT3)器件.基于0.35μm Bipolar-CMOS-DMOS工艺制备了传统DDSCR(DUT1)、内嵌PMOS DDSCR(DUT2)和DUT3三种器件,利用传输线脉冲系统测试了它们的ESD特性.实验结果表明:与DUT1相比,DUT2触发电压从31.3 V下降至5.46 V,维持电压从3.59 V上升至4.65 V,具有窄小的电压回滞幅度.但是,由于DUT2内嵌PMOS常处于开态,导致DUT2器件漏电流高达10-2 A量级,不适用于ESD防护.通过在DUT2内嵌的PMOS栅上引入RC触发电路,提供固定栅压,获得的DUT3不仅进一步减小了电压回滞幅度,同时具有12.6 ns极短的器件开启时间,与DUT1相比,DUT3开启速度提高了约71.5%,漏电流稳定在10-10 A量级.优化的DUT3器件适用于高速小回滞窄ESD设计窗口低压集成电路的ESD防护.  相似文献   

14.
采用0.35μm工艺设计制造了新型UMOS功率器件,芯片集成了数千个UMOS沟槽并使之并联,以获得高的击穿电压和大的工作电流.研究发现,沟槽深度对器件的工艺参数及其导通电阻、漏电流、阈值电压、击穿电压等电学性能都有影响,且最终影响量产中的良率.实验表明,在相同的工艺条件下,沟槽深度为1.65μm(试验范围为1.60~1.95μm)时,Φ200 mm晶片的良率可达98%以上,器件导通电阻约8.2 mΩ,源漏击穿电压稳定在34 V以上,正常工作电流可达5 A,开启电压和漏电流也稳定在要求范围内.  相似文献   

15.
本文以单栅MOSFET的物理模型为基础,导出了双栅MOSFET的物理模型,该模型中,不仅考虑了漏压对沟道长度的调制效应,而且也考虑了栅压对沟道中载流子迁移率的影响,由该模型导出的双栅MOSFET的V—I特性与实验结果做了比较,二者符合得很好,并对器件的V—I特性从物理机制上进行了详细讨论。  相似文献   

16.
通过对器件结构的优化设计,改善了白光有机电致发光器件的色度.该器件的结构为ITO/2T-NATA/NPBX/DPVBi/CBP:Ir(ppy)3/Alq3:DCJTB/BCP/Alq3/LiF/Al.当驱动电压为6 V时,器件的最大电流效率为5.94 cd/A.器件在驱动电压为19 V,电流密度为570 mA/cm2时,最大亮度达到13540 cd/m2,色坐标为(0.31,0.39).而且,当器件的亮度由数十cd/m2增大到最大亮度时,器件的色坐标稳定在(0.31,0.37)附近.  相似文献   

17.
为了降低集成电路制造工艺的成本,用计算机辅助工艺设计(TCAD)的方法开发了金属铝栅CMOS工艺.首先利用3μm金属铝栅工艺对模拟软件TSUPREM-4和器件模拟软件MED ICI进行了校准,再对金属铝栅1.5μm短沟道CMOS工艺进行器件结构、工艺和电气性能等参数的模拟,以最简约工艺在现有工艺线上成功流水了1.5μm铝栅CMOS.实际测试阈值电压为±0.6V,击穿达到11V,各项指标参数的模拟与实际测试误差在5%以内,并将工艺开发和电路设计结合起来,用电路的性能验证了工艺.利用TCAD方法已成为集成电路和分立器件设计和制造的重要方法.  相似文献   

18.
本文基于Synopsys SWB仿真平台,研究了高k介质金属栅器件中栅功函数变化在N/PMOSFET器件的影响,模拟和分析了金属栅功函数在Lgate=32nm N/PMOSFET器件工作特性提高中的最佳优化方向及其机理。研究结果表明, 栅极功函数对N/PMOS器件工作电流Idsat的影响并非简单的单调变化,而是呈现类似钟型分布的特性,存在最佳工作点; 同时金属功函数的优化对于器件短沟道效应SCE和关断漏电流的抑制有着显著地影响;此外通过模拟金属栅替代多晶硅栅的应力模拟表明,在去除多晶硅栅到在沉积金属栅的过程中,会对器件沟道区产生明显的应力作用,从而极大提高器件的工作电流特性。因而,采用优化的金属栅代替多晶硅栅结合High-k材料可以有力推动CMOS器件继续沿着摩尔定律向更小器件尺寸的发展  相似文献   

19.
采用旋涂法制备了氧化铝栅介质层薄膜.通过XRD和AFM分析表征了薄膜的结晶性和表面平整性.分光光度计测试表明薄膜在可见光范围的平均透射率大于85%.采用MIM结构研究其漏电流密度,在电场强度为1MV/cm时仅为3×10-9 A/cm2,表明可以用作栅介质层.以旋涂法涂覆的a-IZO薄膜为沟道层、旋涂法涂覆的氧化铝为介质层,制备了底栅结构的氧化物薄膜晶体管.测试表明该薄膜晶体管工作在n型沟道增强型模式,器件场效应迁移率为1.4cm2/(V·s),电流开关比约为105,阈值电压为2.2V,显示出相对较好的器件性能.  相似文献   

20.
增强空穴注入能力是提高有机电致发光器件(OLEDs)光电性能的一个重要因素.采用碱金属化合物Cu I掺杂NPB结构作为器件的空穴注入层,制备了空穴注入能力增强的有机磷光器件.当发光亮度为1 000 cd/m2时,器件的驱动电压为6. 44 V,相比于参考器件降低了约2. 11 V;器件的最大功率效率为7. 7 lm/W,相比于参考器件提高了约71%;器件的最大亮度达到41 570 cd/m2.上述实验结果表明,优化的Cu I:NPB结构有效促进了器件的空穴注入和传输能力,从而降低了驱动电压,提高了发光亮度,改善了功率效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号