首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
本研究利用商用模拟软件FLUENT,分别使用非稳态初始条件和均温初始条件,对寒区隧道围岩内温度场随时间的变化特性进行了模拟仿真,表明隧道围岩的初始温度场分布对准确模拟寒流导致的围岩温度分布有重要影响。分析了不同保温层材料对隧道围岩结构温度分布的影响,由于三种保温材料的热导率均比较小,5 cm厚保温层后的围岩温度相差不大,但是5 cm厚保温层不足以保证所依托隧道结构不发生冻害;需要根据寒区隧道的气象条件铺设主动加热带,从而有效防止冻害现象的发生。  相似文献   

2.
针对热电制冷系统中电偶极在电场与温度场的耦合作用下非稳态温度变化特性 ,重新推导和分析了热电制冷过程的微分方程式 ,进行了数值模拟和计算 ;详细地分析了几个非稳态工况对冷端温度影响的因素 ;通过对其非稳态数值的模拟和分析 ,得出了热电制冷系统的冷热端在非稳态过程中的基本变化规律  相似文献   

3.
针对冻土区灌注桩基础施工会给冻土引进一定的热量,破坏冻土的稳定冻结状态问题,研究水化热对桩基沿径向温度变化规律及影响桩周冻土温度场的时间。基于桩和冻土的三维非稳态温度场控制方程,并考虑边界条件和冻融相变过程,建立了桩基非稳态温度场控制方程。对桩周温度场的热影响分析表明,浇筑混凝土后水化热在第5 d达到最大,水化热对桩长范围内桩侧土体径向温度变化的影响程度大于桩底面以下土体径向受水化热影响程度,水化热对桩周围土体有较大的影响而且时间长。得出的一些结论可为冻土区桩基设计施工提供参考。  相似文献   

4.
根据炉体结构为细长形以及多段重复的特点,对隧道式加热炉热风进气口和导流板导流孔截面进行等效处理,建立了工作截面的二维模型;根据加热工艺过程中恒温时段较长的特点,采用了稳态流场和温度场的模型;利用流体力学软件FLUENT对实际生产中彩色显像管在隧道式加热炉内加工时的炉内热流场分布情况进行了分析,获得了流速场和温度场;其中流速场与根据等效结构制作的流体图案模型获得的流体图案相吻合;所得到的温度场的个别特征点温度与实际测量结果相符,指出大幅度的温度波动是导致玻壳经常爆裂的主要原因。  相似文献   

5.
建立了油田超深井射孔器材测试模拟器的非稳态传热过程数学模型,对其温度场的分布情况进行了仿真,了解该对象的动态特性,为釜内油温的高精度控制方案的设计提供了理论参考.  相似文献   

6.
路基冻结过程中温度场对变形场的影响   总被引:4,自引:1,他引:4  
为了研究冻土路基温度场及变形场的动态变化规律,基于伴有相变的路基非稳态温度场控制方程和冻土路基变形场二维数值计算模型,对冬季冻土路基温度场和变形场进行了计算分析,得出路基深层土中的温度变化滞后于表层土和气温;对于冻胀冰锋线分布较广的路基,其破坏易在坡脚处产生;冻胀冰锋线分布范围较小的路基,破坏大致发生在竖向位移较大的路基中部。结果表明,冻胀冰锋线的范围是影响路基变形场的重要因素。  相似文献   

7.
汽车尾气催化器温度场的研究   总被引:4,自引:0,他引:4  
为研究汽车尾气催化器在汽车启动过程中的温度场 ,建立了描述催化器内复杂物理化学过程的二维非稳态数理模型。利用热流体计算软件 Phoenics1.4对模型进行了稳态与非稳态的计算 ,分析了尾气流量、载体上贵金属活性中心表面积等对催化器温度场及其转化效率的影响。为验证模型的可靠性 ,在实际的发动机台架上研究了国产催化器内的温度场及其转化效率。研究表明 :加大尾气流量 ,增加载体上贵金属活性中心表面积等措施可加快催化器的起燃速度 ;但当催化器接近稳态时 ,尾气流量越大 ,催化器的转化效率反而越低  相似文献   

8.
本文通过实验找出了水冷式这种合理、高效的散热方法,并制出了模型;推导出了水中的稳态温度场。  相似文献   

9.
为了研究塔式太阳能多孔介质吸热器的非稳态传热特性,建立了该吸热器的非稳态传热模型,通过最小二乘拟合提出适合该类型吸热器多孔介质的体积对流换热系数模型,采用数值方法求解,分别分析典型的非稳态无量纲温度场以及平均颗粒直径、孔隙率、厚度与入口空气速度对非稳态无量纲温度场的影响.结果表明:为了减小吸热器的热应力破坏,相关参数选...  相似文献   

10.
热连轧工作辊三维瞬态温度场数值模拟   总被引:2,自引:0,他引:2  
考虑水冷、空冷、摩擦热和变形热以及工作辊与轧件接触热传导等动边界条件,采用有限差分法,建立了热连轧工作辊三维瞬态温度场分析计算模型。使用该模型实现了对工作辊温度的动态分析和精确计算,预测工作辊非稳态轧制时的瞬态温度分布、稳态温度场和终轧后空冷时的温度场。  相似文献   

11.
面向最终用户的船体静,动力分析软件   总被引:3,自引:0,他引:3  
介绍了一种面向最终用户的船体静、动力分析软件——SDASHforWindows.该软件基于船体阶梯形薄壁有限元模型,采用薄壁杆件理论计算船体剖面的弯曲和扭转特性,并计及横向抗扭箱、横向甲板条等横向抗扭结构对船体刚度产生的影响.软件能根据各主要船级社的规范计算出船体弯扭合成应力,还可进行船体静挠度和振动模态分析计算.  相似文献   

12.
计及流固耦合的船体薄壁梁波浪载荷响应研究   总被引:1,自引:0,他引:1  
计及流固耦合影响,本文提出了包括波浪载荷、模态分析和船体薄壁梁结构的波浪载荷响应的理论计算方法.用本文方法和相应计算程序计算了一条6m 长钢质船模的固有频率、振型及弯扭耦合波激振动响应.模态分析结果同常规有限元计算作了比较.计算中还讨论了一些波浪参数的变化对波激振动响应的影响.  相似文献   

13.
船舶CFD结构化网格自动生成技术的开发   总被引:1,自引:0,他引:1  
为提高船舶黏性流场计算流体动力学(CFD)数值计算的效率,开发了带自由面三维船舶黏性流场CFD计算用网格自动生成软件.该软件可实现三维船体曲面模型导入、计算区域划分、结构化网格生成及边界条件设置等操作的自动化完成和参数化控制.以某集装箱船模校验程序,并在阻力性能和自由表面波高分布等多方面将数值计算结果与试验结果作对比.结果表明,该软件所生成网格在保证船舶阻力性能预报足够精确的同时,生成效率得到极大提高.  相似文献   

14.
原位开采是油页岩未来主流开采技术,目前油页岩原位开采技术研究对象多为厚层油页岩,但中国存在大量的薄层油页岩,故研究薄层油页岩原位电加热温度分布规律具有重要的意义.针对中国特殊薄层油页岩结构,采用ANSYS软件中瞬态热分析模块,建立薄层油页岩原位电加热模型,研究加热5年内薄层油页岩中温度场分布.仿真结果表明:油页岩的有效加热体积随加热时间增加而增大,且加热前3年增加速度显著快于3年之后,加热3年后继续加热增热效果已不明显,故加热薄层油页岩在加热3年可以使利益最大化.研究结果为中国薄层油页岩的开发提供了数据支撑.  相似文献   

15.
装甲车辆红外热像模拟及数据前后处理技术   总被引:6,自引:2,他引:6  
该文建立了装甲车辆在不同状态、不同的地理条件和不同的气象条件下的温度理论模型以及在8-12μm红外波段下的红外辐射强度计算模型,编制了与上述模型要关的数据前后处理软件,对于检验理论模型的正确性和装甲车辆红外模拟软件的深度开发及应用具有重要价值。  相似文献   

16.
分析了建筑物外围护结构采用单层玻璃、双层玻璃及其外表涂覆空心玻璃微珠(HGM)薄膜时的隔热性能,以及HGM薄膜的传热系数和隔热效率,并采用建筑能耗分析模拟软件DOE-2对其隔热效率进行计算.结果表明:在建筑物及其外窗玻璃表面涂覆HGM薄膜后,能够有效降低建筑物的室内温度;在建筑物普通外墙表面涂覆HGM薄膜后,也可降低其室内温度.  相似文献   

17.
为了准确计算船舶溢油事故发生时,油舱油液泄漏入水行为过程,比较了3种不同的油舱油液泄漏入水行为模拟方法,即极简化模型模拟方法、小孔射流模型模拟方法和计算流体动力学模型模拟方法。结合事故性船舶溢油实际情景,分析这些模拟方法的适用范围和局限性,并进行实验验证。实验结果表明:耦合复杂船体结构建模的计算流体动力学模型计算方法能更准确地模拟油舱泄漏入水行为。  相似文献   

18.
机载导弹发射动力学建模与虚拟样机仿真   总被引:1,自引:0,他引:1  
基于导弹在发射导轨上的运动特征,以"捕食者"机载导弹发射系统为物理原形,建立了发射动力学和运动学模型,并应用MSC.ADAMS软件建立导轨发射条件下弹-架系统动力学模型,进行了动力学仿真试验,研究结果表明,理论计算值和仿真结果相符,得到了发射过程中导弹的位置、速度和加速度随时间的变化关系以及导弹与载机分离时对载机位置、速度和加速度的影响规律.  相似文献   

19.
以流溪河特大桥为工程背景,通过有限元软件建立该桥悬臂施工阶段仿真模型,并对箱梁的温度效应进行分析计算.得出温度变化对桥梁悬臂施工阶段应力和变形的影响,并通过温度场试验数据与理论计算数据进行对比,验证了模型计算的正确性,为同类桥梁施工监控提供参考.  相似文献   

20.
容积导电模型研究可用于容积导电系统的设计和能量传递参数的优化.笔者考虑电路、电场和温度场的相互耦合关系,建立了容积导电的三维多场耦合模型.该模型在电路层面上实现了容积导电的仿真,皮肤组织温升的实时监测,为能量传递的优化设计提供了直接的理论指导.利用软件FEM3.5搭建了容积导电多场耦合模型,从多物理视角验证了容积导电能量传递的可行性,为进一步优化能量传递效率奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号