首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Wei B  Dai M  Yin P 《Nature》2012,485(7400):623-626
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.  相似文献   

2.
He Y  Ye T  Su M  Zhang C  Ribbe AE  Jiang W  Mao C 《Nature》2008,452(7184):198-201
DNA is renowned for its double helix structure and the base pairing that enables the recognition and highly selective binding of complementary DNA strands. These features, and the ability to create DNA strands with any desired sequence of bases, have led to the use of DNA rationally to design various nanostructures and even execute molecular computations. Of the wide range of self-assembled DNA nanostructures reported, most are one- or two-dimensional. Examples of three-dimensional DNA structures include cubes, truncated octahedra, octohedra and tetrahedra, which are all comprised of many different DNA strands with unique sequences. When aiming for large structures, the need to synthesize large numbers (hundreds) of unique DNA strands poses a challenging design problem. Here, we demonstrate a simple solution to this problem: the design of basic DNA building units in such a way that many copies of identical units assemble into larger three-dimensional structures. We test this hierarchical self-assembly concept with DNA molecules that form three-point-star motifs, or tiles. By controlling the flexibility and concentration of the tiles, the one-pot assembly yields tetrahedra, dodecahedra or buckyballs that are tens of nanometres in size and comprised of four, twenty or sixty individual tiles, respectively. We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures.  相似文献   

3.
Analogic China map constructed by DNA   总被引:1,自引:0,他引:1  
In this research,a nanoscale DNA structure of analogic China map is created. The nanostructure of roughly 150 nm in diameter with a spatial resolution of 6 nm is purely constructed by folding DNA. The picture observed by atomic force microscopy (AFM) is almost identical with the de-signed shape. The DNA origami technology invented by Rothemund in 2006 is employed in the construc-tion of this shape,which has proved the capability of constructing almost any complicated shape enabled by DNA origami,and provides new bottom-up method for constructing nanostructures.  相似文献   

4.
Shih WM  Quispe JD  Joyce GF 《Nature》2004,427(6975):618-621
Molecular self-assembly offers a means of spontaneously forming complex and well-defined structures from simple components. The specific bonding between DNA base pairs has been used in this way to create DNA-based nanostructures and to direct the assembly of material on the subnanometre to micrometre scale. In principle, large-scale clonal production of suitable DNA sequences and the directed evolution of sequence lineages towards optimized behaviour can be realized through exponential DNA amplification by polymerases. But known examples of three-dimensional geometric DNA objects are not amenable to cloning because they contain topologies that prevent copying by polymerases. Here we report the design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation-renaturation procedure. We use cryo-electron microscopy to show that the DNA strands fold successfully, with 12 struts or edges joined at six four-way junctions to form hollow octahedra approximately 22 nanometres in diameter. Because the base-pair sequence of individual struts is not repeated in a given octahedron, each strut is uniquely addressable by the appropriate sequence-specific DNA binder.  相似文献   

5.
Synthesis from DNA of a molecule with the connectivity of a cube   总被引:21,自引:0,他引:21  
J H Chen  N C Seeman 《Nature》1991,350(6319):631-633
A principal goal of biotechnology is the assembly of novel biomaterials for analytical, industrial and therapeutic purposes. The advent of stable immobile nucleic acid branched junctions makes DNA a good candidate for building frameworks to which proteins or other functional molecules can be attached and thereby juxtaposed. The addition of single-stranded 'sticky' ends to branched DNA molecules converts them into macromolecular valence clusters that can be ligated together. The edges of these frameworks are double-helical DNA, and the vertices correspond to the branch points of junctions. Here, we report the construction from DNA of a covalently closed cube-like molecular complex containing twelve equal-length double-helical edges arranged about eight vertices. Each of the six 'faces' of the object is a single-stranded cyclic molecule, doubly catenated to four neighbouring strands, and each vertex is connected by an edge to three others. Each edge contains a unique restriction site for analytical purposes. This is the first construction of a closed polyhedral object from DNA.  相似文献   

6.
Benenson Y  Gil B  Ben-Dor U  Adar R  Shapiro E 《Nature》2004,429(6990):423-429
Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems. Recently, simple molecular-scale autonomous programmable computers were demonstrated allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for 'logical' control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug.  相似文献   

7.
Smit B  Maesen TL 《Nature》2008,451(7179):671-678
Shape selectivity is a simple concept: the transformation of reactants into products depends on how the processed molecules fit the active site of the catalyst. Nature makes abundant use of this concept, in that enzymes usually process only very few molecules, which fit their active sites. Industry has also exploited shape selectivity in zeolite catalysis for almost 50 years, yet our mechanistic understanding remains rather limited. Here we review shape selectivity in zeolite catalysis, and argue that a simple thermodynamic analysis of the molecules adsorbed inside the zeolite pores can explain which products form and guide the identification of zeolite structures that are particularly suitable for desired catalytic applications.  相似文献   

8.
在溶剂热条件下成功制备了纳米α-Fe2O3.对产物进行了XRD、TEM、HRTEM及FESEM等表征.所得到的六方相的纳米α-Fe2O3平均粒径为200nm.通过改变实验的反应条件,可以控制纳米α-Fe2O3的形貌.并对产物的形成提出了可能的机理.  相似文献   

9.
For about three decades, DNA-based nanotechnology has been undergoing development as an assembly method for nanostructured materials. The DNA origami method pioneered by Rothemund paved the way for the formation of 3D structures using DNA self assembly. The origami approach uses a long scaffold strand as the input for the self assembly of a few hundred staple strands into desired shapes. Herein, we present a 3D origami "roller" (75 nm in length) designed using caDNAno software. This has the potential to be used as a template to assemble nanoparticles into different pre-defined shapes. The "roller" was characterized with agarose gel electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM).  相似文献   

10.
研究了在Cu(Ⅱ)的存在下柔红霉素与DNA或RNA的荧光猝灭反应,发现单、双链DNA及RNA均能大幅猝灭柔红霉素-Cu(Ⅱ)二元体系的荧光,最佳PH值范围为5.4-7.1,最大激发和发射波长分别在505和555nm。在最佳条件下,测定双链DNA线性范围为0-0.6μg/mL,检测限为0.008μg/mL,相对标准偏差在3.0%以内。温度的影响和吸收光谱证实了DNA对此二元体系的荧光猝灭机理为静态猝灭机理。  相似文献   

11.
分别以丙烯基硫脲和五水氯化镉为硫源及镉源,利用水热法合成了树枝状CdS复杂纳米结构,利用X射线衍射谱、场发射扫描电子显微镜、透射电子显微镜、高分辨电子显微镜和电子衍射等对产物的形貌和结构进行表征.利用室温荧光光谱和紫外-可见光吸收谱对产物的光学性质进行研究.结果表明,所得产物是六方晶系的CdS,并且树枝状CdS是单晶.研究了不同硫源和镉源对产物形貌的影响,同时对树枝状CdS复杂纳米结构的形成机制进行了探讨.  相似文献   

12.
Homologous recombination is a ubiquitous process with key functions in meiotic and vegetative cells for the repair of DNA breaks. It is initiated by the formation of single-stranded DNA on which recombination proteins bind to form a nucleoprotein filament that is active in searching for homology, in the formation of joint molecules and in the exchange of DNA strands. This process contributes to genome stability but it is also potentially dangerous to cells if intermediates are formed that cannot be processed normally and thus are toxic or generate genomic rearrangements. Cells must therefore have developed strategies to survey recombination and to prevent the occurrence of such deleterious events. In Saccharomyces cerevisiae, genetic data have shown that the Srs2 helicase negatively modulates recombination, and later experiments suggested that it reverses intermediate recombination structures. Here we show that DNA strand exchange mediated in vitro by Rad51 is inhibited by Srs2, and that Srs2 disrupts Rad51 filaments formed on single-stranded DNA. These data provide an explanation for the anti-recombinogenic role of Srs2 in vivo and highlight a previously unknown mechanism for recombination control.  相似文献   

13.
T Q Trinh  R R Sinden 《Nature》1991,352(6335):544-547
When present in single-stranded DNA, palindromic or quasi-palindromic sequences have the potential to form complex secondary structures, including hairpins, which may facilitate interstrand misalignment of direct repeats and be responsible for diverse types of replication-based mutations, including deletions, additions, frameshifts and duplications. In regions of palindromic symmetry, specific deletion events may involve the formation of a hairpin or other DNA secondary structures which can stabilize the misalignment of direct repeats. One model suggests that these deletions occur during DNA replication by slippage of the template strand and misalignment with the progeny strand. The concurrent DNA replication model, involving an asymmetric dimeric DNA polymerase III complex which replicates the leading and lagging strands, has significant implications for mutagenesis. The intermittent looping of the lagging strand template, and the fact that the lagging strand template may contain a region of single-stranded DNA the length of an Okazaki fragment, provides an opportunity for DNA secondary-structure formation and misalignment. Here we report our design of a palindromic fragment to create an 'asymmetric palindromic insert' in the chloramphenicol acetyltransferase gene of plasmid pBR325. The frequency with which the insert was deleted in Escherichia coli depends on the orientation of the gene in the plasmid. Our results suggest that replication-dependent deletion between direct repeats may occur preferentially in the lagging strand.  相似文献   

14.
Taylor AF  Smith GR 《Nature》2003,423(6942):889-893
Helicases are molecular motors that move along and unwind double-stranded nucleic acids. RecBCD enzyme is a complex helicase and nuclease, essential for the major pathway of homologous recombination and DNA repair in Escherichia coli. It has sets of helicase motifs in both RecB and RecD, two of its three subunits. This rapid, highly processive enzyme unwinds DNA in an unusual manner: the 5'-ended strand forms a long single-stranded tail, whereas the 3'-ended strand forms an ever-growing single-stranded loop and short single-stranded tail. Here we show by electron microscopy of individual molecules that RecD is a fast helicase acting on the 5'-ended strand and RecB is a slow helicase acting on the 3'-ended strand on which the single-stranded loop accumulates. Mutational inactivation of the helicase domain in RecB or in RecD, or removal of the RecD subunit, altered the rates of unwinding or the types of structure produced, or both. This dual-helicase mechanism explains how the looped recombination intermediates are generated and may serve as a general model for highly processive travelling machines with two active motors, such as other helicases and kinesins.  相似文献   

15.
Hierarchically hollow nanostructures have been the focus of numerous studies due to their prominent physicochemical properties that differ significantly from bulk materials and their potential for extensive applications. We present a novel diatom-based scaffold for the synthesis of hierarchically biomorphic CeO2 with special porous structure via incorporating Ce ions into the frustule. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption measure- ments were adopted to characterize the products. Owing to its unique hierarchical structure and periodic meso-macro scale features, the obtained CeO2 exhibits high catalytic activity in CO oxidation. This facile strategy may design a new way towards replicating desired biological structures for metal oxide catalyst in other potential applications.  相似文献   

16.
Using a small quantity of DNA molecules and little experimental time to solve complex problems successfully is a goal of DNA computing. Some NP-hard problems have been solved by DNA computing with lower time complexity than conventional computing. However, this advantage often brings higher space complexity and needs a large number of DNA encoding molecules. One example is graph coloring problem. Current DNA algorithms need exponentially increasing DNA encoding strands with the growing of problem size. Here we propose a new DNA algorithm of graph coloring problem based on the proof of four-color theorem. This algorithm has good properties of needing a relatively small number of operations in polynomial time and needing a small number of DNA encoding molecules (we need only 6R DNA encoding molecules if the number of regions in a graph is R).  相似文献   

17.
A new DNA algorithm to solve graph coloring problem   总被引:1,自引:0,他引:1  
Using a small quantity of DNA molecules and little experimental time to solve complex problems successfully is a goal of DNA computing. Some NP-hard problems have been solved by DNA computing with lower time complexity than conventional computing. However, this advantage often brings higher space complexity and needs a large number of DNA encoding molecules. One example is graph coloring problem. Current DNA algorithms need exponentially increasing DNA encoding strands with the growing of problem size. Here we propose a new DNA algorithm of graph coloring problem based on the proof of four-color theorem. This algorithm has good properties of needing a relatively small number of operations in polynomial time and needing a small number of DNA encoding molecules (we need only 6R DNA encoding molecules if the number of regions in a graph is R).  相似文献   

18.
DNAzymes(Dzs) are single-stranded DNA catalysts that specifically cleave the mRNA of targeted genes.Compared with other gene-silencing technologies,such as ribozymes,antisense oligonucleotide and small interference RNA(siRNA),DNAzymes have several advantages,including small molecular weight,diversity,low cost and relative stability in serum.With the evolution of molecular technology,the first DNAzyme was generated in vitro in 1994.From then on,DNAzymes have been studied in order to understand their structures,chemistry and biological applications.Particularly,DNAzymes have been widely applied as a new interference strategy in the treatment of many conditions,including cancer,viral diseases,and cardiovascular diseases.This review mainly summarizes the use of DNAzymes in the areas of cancer research and therapy.  相似文献   

19.
Qian L  Winfree E  Bruck J 《Nature》2011,475(7356):368-372
The impressive capabilities of the mammalian brain--ranging from perception, pattern recognition and memory formation to decision making and motor activity control--have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control. Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the 'intelligent' behaviour required for survival. However, the study of how molecules can 'think' has not produced an equal variety of computational models and applications of artificial chemical systems. Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron. Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours. Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks. Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern. Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.  相似文献   

20.
 天然分子机器是细胞正常功能(包括DNA复制、细胞内物质运输、离子平衡和细胞运动等)的重要执行者。受天然分子机器的启发,人工分子机器的概念被提出并逐步实践。DNA分子独特的理化性质使得其可作为自组装基元用于构建分子机器类纳米结构。DNA纳米结构具有形状可设计性、精确的可寻址性、结构动态响应性及良好的生物相容性,可以作为一种良好的药物递送载体材料。通过可寻址的负载特定功能元件从而构建DNA纳米载体和治疗型DNA纳米机器,可以靶向性地将药物传递到病变组织和细胞,响应性地释放药物,提高药物的细胞摄取率并降低其毒副作用,有望成为优秀的药物递送系统。基于DNA纳米结构的药物载体已经被用于递送小分子药物、寡核苷酸类药物和蛋白药物。以每类药物分子中的典型药物为例,介绍了DNA纳米载体和DNA纳米机器药物递送系统的研究进展,并讨论了其所面临的挑战及可能的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号