首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
以水杨醛缩邻氨基苯甲酸合铜(II)[CuI(I)-HBAB]为中性载体,制备了一种对硫氰酸根(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为的离子电极,其选择性次序为:SCN->ClO4->Sal->I->SO 32->NO3->Br->Cl->SO42-。该电极在pH=5.0的磷酸盐缓冲体系中具有最佳的电位响应,在1.0×10-6~1.0×10-1m ol/LSCN-浓度范围呈近能斯特响应,斜率为-57.5mV/dec(25℃),检测下限为5.0×10-7mol/L。采用交流阻抗和紫外光谱分析技术研究了配合物中心金属原子以及配合物本身的结构对电极电位响应行为的作用机理。将该电极用于废水分析,结果令人满意。  相似文献   

2.
研究了基于水杨醛缩碳酰胺合铜(Ⅱ)[Cu(Ⅱ)-SAU]、水杨醛缩碳酰胺合镍(Ⅱ)[Ni(Ⅱ)-SAU]的金属配合物为中性载体的阴离子选择性电极.实验结果表明:以水杨醛缩碳酰胺合铜(Ⅱ)[Cu(Ⅱ)-SAU]为中性载体的离子选择性电极对水杨酸根离子(Sal-)具有良好的电位响应特性,且呈现反Hofmeister行为,其选择性序列从大到小为:Sal-,ClO4-,I-,SCN-,NO2-,NO3-,Br-,SO24-,SO23-,Cl-.在pH=4·0的磷酸盐缓冲体系中该电极具有最佳的电位响应,在1·0×10-1~9·6×10-6mol/L浓度范围内呈近能斯特响应,斜率为-51·4mV/dec(25℃),检测下限为8·1×10-6mol/L.采用交流阻抗研究了电极的响应机理,并将电极用于样品分析,结果比较满意.  相似文献   

3.
利用循环伏安法制备银掺杂聚L-天冬氨酸化学修饰电极.用循环伏安法研究对氨基苯酚在该电极上的电化学行为,建立测定对氨基苯酚的新方法.在pH=5.5的磷酸盐缓冲溶液中,对氨基苯酚在银掺杂聚L-天冬氨酸修饰电极上产生一对灵敏的氧化还原峰,峰电位分别为Epa=203 mV,Epc=129 mV(相对Ag/AgCl电极).用循环伏安法(CV)进行测定,氧化峰峰电流与对氨基苯酚的浓度分别在8.00×10-7~1.00×10-4 mol/L和1.00×10-4~5.00×10-4 mol/L范围内呈线性,检出限为1.0×10-7 mol/L.对5.0×10-5 mol/L对氨基苯酚溶液平行测30次,其相对标准偏差为6.9%,用于废水中对氨基苯酚的测定,结果满意.  相似文献   

4.
利用分子印迹技术,以日落黄为模板分子、邻氨基酚为功能单体,采用循环伏安法在石墨电极表面电聚合形成邻氨基酚聚合膜,经电化学方法在0.5mol/L H2SO4溶液中将模板分子去除,制得具有特异识别空穴的日落黄分子印迹修饰电极,然后,采用紫外可见分光光度法和电化学法对聚合薄膜进行表征.实验表明,该分子印迹修饰电极对日落黄有较高的结合速率、特异识别能力和灵敏度,-0.010V处微分脉冲伏安法的峰电流与日落黄的浓度在1.00×10-6~1.00×10-4 mol/L范围内呈良好的线性关系,且检出限为2.00×10-7 mol/L.运用该方法测定了饮料中的日落黄,回收率为95%~108%,为饮料中日落黄的选择性分析提供新的实验方法.  相似文献   

5.
报道了基于钴希夫碱双水杨醛缩二亚丙基三胺合钴(II)(Co(II)-BSADDPA)为载体的溶剂聚合膜阴离子选择性电极,该电极对高氯酸根离子的电位响应具有优良的选择性和灵敏度.在pH值为5 5的缓冲溶液中,电极电位呈现近能斯特响应,线性响应范围为8×10-6~1×10-1mol/L,斜率为59 4mV/dec,检测下限为5×10-6mol/L.采用交流阻抗和光谱分析技术研究了电极的响应机理并将电极用于花炮中高氯酸根离子的检测,结果满意.  相似文献   

6.
新型双核锰金属配合物中性载体水杨酸根离子电极的研究   总被引:8,自引:4,他引:8  
首次研究了基于N,N双水杨醛缩乙二胺双核锰(Ⅳ)[Mn2(Salen)2O2]为中性载体的PVC膜电极.该电极对水杨酸根(Sal-)具有优良的电位响应性能和选择性,并呈现出反Hofmeister选择性行为,其选择性次序从大到小为Sal-,ClO-4,SCN-,I-,NO-3,Br-,SO2-3,NO-2,SO2-4,Cl-.在pH=5.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为9.0×10-6~1.0×10-1mol/L,斜率为-53.6mV/dec(20℃),检测下限为7.0×10-6mol/L.采用交流阻抗技术和紫外可见光谱技术研究了电极响应机理.该电极可用于阿司匹林药品分析.  相似文献   

7.
以水杨醛缩硫代氨基脲合铜(Ⅱ)为中性载体,制备了一种对碘离子(I-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为的离子电极,其选择性大小依次为:I-,Sal-,ClO-3,H2PO-4,2,SO2-4,SCN-,Cl-,NO-3,NO-SO2-4.该电极在pH2 0的磷酸盐缓冲体系中具有最佳的电位响应,在1 0×10-1~8 0×10-5mol/LI-浓度范围呈近能斯特响应,斜率为-54 0mV/pI-(25℃),检测下限为4 0×10-5mol/L.采用交流阻抗和紫外光谱分析技术研究了配合物中心金属原子以及配合物本身的结构对电极电位响应行为的作用机理.将该电极用于药物含碘量的测定,获得满意的结果.  相似文献   

8.
报道了以双(N-甲基-N-苯基氨基二硫代甲酸)1,4-丁二醇酯为载体的PVC膜电极的响应行为.结果表明:该选择电极对银离子有良好的灵敏度和高选择性,在10-3~10-6mol/L的浓度范围内响应斜率为53.3 mV/paAg ,检测下限为3.8×10-7mol/L,碱金属、碱土金属及过渡金属离子不干扰银的测定,电极具有较好的重现性和稳定性.该电极可作为Ag 准确滴定卤素阴离子和维生素B1药片中维生素B1含量的电位滴定指示电极,并用于水样中银离子含量的直接测定.  相似文献   

9.
用溶胶-凝胶法制备一种以溶胶凝胶为载体的硫酸离子选择性电极.该电极有良好的能斯特响应,电极的响应范围为1.0x10=2mol/L~9.0?0-5mol/L,斜率为33.0 mV/dec,检测下限为7.2x19=5 mol/L.电极响应快,体积小,稳定性和重现性好.电极用作回收率测定,其结果令人满意.  相似文献   

10.
采用电位分析法研究了基于锰(Ⅲ)Sehiff碱配合物为中性栽体的新型PVC膜阴离子选择性电极.电板对碘离子具有优良的电位响应特性,并呈现反Hofmeister行为,其选择性序列为I->>Sal->ClO4-SCN->NO2->NOr3Cl->Br->SO42-.电极在0.1~9.0×10-5mol/L浓度范围内对I-呈近能斯特响应,检测下限为2.0×10-5mol/L,斜率为-52.6 mv/pI-.电极具有选择性高、响应快、稳定性和重现性好、制备和操作简便等优点.将电极应用于药物分析,得到令人满意的结果.  相似文献   

11.
以合成的双(N-乙基-N-苯基氨基二硫代甲酸)1,3-丙二醇酯为载体,采用双层膜电位法直接测定了溶剂聚合物膜中载体与金属离子的络合物生成常数.制备并考察了以双(N-乙基-N-苯基氨基二硫代甲酸)1,3-丙二醇酯为载体的银离子选择电极的性能.实验结果表明:该选择电极对银离子有良好的响应性能和高选择性,在10-3~10-6mol/L的浓度范围内响应斜率为56.0 mV/paAg+,检测下限为3.7×10-7mol/L,碱金属、碱土金属及过渡金属离子不干扰银的测定.该电极可作为测定维生素B1药片中维生素B1含量的电位滴定指示电极和水样中银离子含量的直接测定.  相似文献   

12.
碳纳米管修饰玻碳电极方波伏安法对乙酰氨基酚的测定   总被引:1,自引:0,他引:1  
建立了以Nafion分散多壁碳纳米管(MWCNTs)修饰玻碳电极(MWCNTs-Nafion-GCE)测定对乙酰氨基酚的方法。结果表明,在0.10 mol/L的HAc-NaAc缓冲液中,该修饰电极对对乙酰氨基酚有明显的催化和增敏效应,其氧化电位由 0.55 V负移至 0.48 V,产生了70 mV的电位降。利用方波伏安法进行定量测定,其线性范围为1.0×10-7~1.0×10-4mol/L,线性相关系数0.999 8,检出限3.7×10-8mol/L。并应用于药物加合百服宁药片中对乙酰氨基酚的含量测试,结果令人满意。  相似文献   

13.
用溶胶-凝胶包埋硝酸银制备碘离子选择性电极。该电极对I-浓度在10-1~10-7mol/L范围内呈Nernst响应,反应斜率为58.321mV/pI-,检测下限为4.6×10-8mol/L,回收率为97.4%~103.2%。  相似文献   

14.
以自组装方式,将多壁碳纳米管、聚酰胺-胺和辣根过氧化物酶修饰到玻碳电极表面,构建了H2O2生物传感器.研究了影响传感器工作性能的因素,确定了最佳分析条件,即pH值6.8的PBS缓冲溶液,工作电位为-0.15 V.在最佳工作条件下,电极对H2O2快速响应(响应时间<1 s),在9×10-7~1×10-4mol/L范围内,电极的电流响应值与H2O2浓度呈现良好的线性关系,线性回归方程为i(μA)=20.76 C(mmol/L)+0.223 0,R=0.999 0,检出限为5.0×10-7mol/L,电极的电流响应灵敏度为0.247 A mol-1.cm-2.电极应用于食用油脂中过氧化物测定,结果与碘量法一致.  相似文献   

15.
银掺杂聚L-苏氨酸修饰电极的制备及对多巴胺的测定   总被引:1,自引:1,他引:0  
利用循环伏安法,研究了银和L-苏氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-苏氨酸修饰电极。并研究了多巴胺在修饰电极上的电化学行为,建立了测定多巴胺的新方法。在pH=6.5磷酸盐缓冲溶液中,扫描速率为20mV/s,多巴胺在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.218V,Epc=0.189V。用示差脉冲伏安法测定时,峰电流与多巴胺浓度分别在8.00×10-7~1.00×10-5和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为1.0×10-7mol/L。用于药物中多巴胺的测定,结果满意。  相似文献   

16.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BmimPF6)为活性物质制得离子选择性电极,该电极对离子液体BmimCl有较好的电位响应,线性响应浓度范围为1×10^-5mol/L~1×10^-2mol/L.用十二烷基硫酸钠(SDS)与BmimPF6进行阴离子交换制得的1-丁基-3-甲基咪唑十二烷基硫酸盐(BmimDS)作为活性物质,能降低电极的检测下限,线性响应浓度范围拓展为1×10^-6~1×10^-2mol/L.该电极显示出良好的稳定性和重现性.此外,该电极可作为电位滴定法的指示电极用于对四丁基氯化铵(TBACl)、十二烷基硫酸钠(SDS)的滴定分析.  相似文献   

17.
首次研究了以2'-(2-呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物[Cu(Ⅱ)-THBH]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序从大到小为:SCN-,Sal-,ClO-4,I-,Br-,NO-3,Cl-,NO-2,SO2-3,SO2-4,H2PO4-.电极在pH5.0的磷酸盐缓冲体系中,对SCN-在1.0×10-1~5.0×10-6mol/L浓度范围内呈近能斯特响应,斜率为-53.4 mV/dec(25℃),检测下限为1.2×10-6mol/L.利用交流阻抗和紫外可见光谱初步研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检测限低、制备简单等优点.将电极初步应用于实际样品废水分析,结果与HPLC法一致.  相似文献   

18.
首次研究了以2'-(2-呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物[Cu(Ⅱ)-THBH]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序从大到小为SCN-,Sal-,ClO-4,I-,Br-,NO-3,Cl-,NO-2,SO2-3,SO2-4,H2PO4-.电极在pH5.0的磷酸盐缓冲体系中,对SCN-在1.0×10-1~5.0×10-6mol/L浓度范围内呈近能斯特响应,斜率为-53.4 mV/dec(25℃),检测下限为1.2×10-6mol/L.利用交流阻抗和紫外可见光谱初步研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检测限低、制备简单等优点.将电极初步应用于实际样品废水分析,结果与HPLC法一致.  相似文献   

19.
利用循环伏安法(CV)将硫堇电聚合修饰于裸玻碳电极(GCE)表面,制备成聚硫堇薄膜修饰电极(PTHE).利用PTHE对对乙酰氨基酚(PRCT)的电催化作用,建立了对PRCT进行定量分析的电化学分析新方法.在0.02 mol/L(pH=6.86) KH2P04- Na2HP04体系中,PRCT的浓度在8.2×10-6 mol/L~8.2×10-4 mol/L范围内与氧化峰电流呈良好的线性关系,线性回归方程和线性相关系数分别为:iPa((μA)= -1.40×105C(mol/L)-22.85,γ= -0.999 1,检出限为8.2×10-7 mol/L.利用该法对药物样品的有效成分进行定量分析,得到满意结果.6次样品分析结果的相对标准偏差为3.1%,回收率为95.8%~104.4%,完全满足微量分析要求.  相似文献   

20.
首次研制了基于二苯甲酮缩氨基硫脲合汞(Ⅱ)金属配合物[Hg(Ⅱ)-BBKT]为中性载体的阴离子选择性电极.该电极对碘根(I-)具有优良的电位响应性能,并呈现出反Hofmeister选择性行为,其选择性次序为:I->CIO4->SCN->Sal->Br->NO3->Cl->NO2->SO32->SO42-.在pH2.5的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为2.9×10-5~1.0×1mol-1mol/L,斜率为-51.2 mV/dec(20℃),检测下限是1.0×10-5mol/L.采用紫外可见光谱技术研究了电极的响应机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.井将该电极用于实验室废水碘离子检测,其结果令人满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号