首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
半质环的一个交换性定理   总被引:1,自引:0,他引:1  
文中郭元春证明了定理A 设R为半质环,若有整数n>1及m>1使R是(m~n—m)—扭自由的,并且对任意的x,y∈R恒有[x~n,y]=(x,y~n]则R为交换环。定理B 设R为半质环,C为R之中心,若有整数n≥1使对任意的x,y∈R恒有[x~n,y]-[x,y~n]∈C,[x~(n 1),y]-[x,y~(n 1)]∈C,则R为交换环。本文证明定理设R为半质环,C为R之中心,若有整数n>1使对任意的x,y∈R恒有[x~n,y]=[x,y~n]∈C,则R为交换环。  相似文献   

2.
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.2)设R为k the半单纯环,若对R中任意x,y,存在整数m=m(x,y)≥n=n(x,y)≥0,多项式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.  相似文献   

3.
给出了定理:设R为半质环,若对(A)x,y∈R都有(xy)3 +x3y3∈Z(R),则R为交换环.并且给出了其若干证明方法.  相似文献   

4.
为了促进交换性的发展,根据半质环及半单环的相关资料,扩展了文献[1-2]的结论,得出了环的两个交换性定理:定理1:设R为一个半质环,若对(v)x1,x2,…,xn∈R,有依赖于x1,x2的整系数多项式P(t)使得[…[[x1-x21p(x1),x2],x3],…,xn]∈Z(R),则R为交换环。定理2:设R为一个kot...  相似文献   

5.
设R是个半质环,C是R的中心,f_i(x,y)(i=1,2)是关于m个x,n个y的乘积。本文之定理用比较简单的方法证明了下列之命题(Ⅰ)蕴含命题(Ⅱ): (Ⅰ)若对任何x,y∈R,均有f_1(x,y)—f_2(x,y)∈C,则R为交换环。 (Ⅱ)若对任何x,y∈R,均有f_1(x,y) f_2(x,y)∈C,则R为交换环。从而,给出了文献[5]、[8]、[9]若干定理的简短的证明。  相似文献   

6.
环的两个交换性定理   总被引:1,自引:1,他引:0  
证明了满足下列条件的环是交换环1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.2)设R为kothe半单环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.  相似文献   

7.
环的交换性条件   总被引:1,自引:0,他引:1  
设R是半质环,C是R的中心。本文证明,当R满足下述条件之一时为交换环: 1.对任意x,y∈R,均有(xy)~2 x~2y~2∈C; 2.对任意x,y∈R,均有(xy)~2 y~2x~2∈C; 3.有整数n>1,m>1,使对任意x,y∈R,均有[X~n,y)-[x,y~n]∈C,且R为(M~n-m)-扭自由的。 我们定义环R的m-超中心为T_m={r∈R|对任意x∈R,均有rx~m=x~mr}。本文证明,若R为半质环,则T_m即为R的中心。  相似文献   

8.
引入了幂级数弱McCoy环的概念。证明了:(1)设{Ri|i∈I}是一族环,如果每一个Ri(i∈I)是幂级数弱McCoy环,则∏i∈I Ri是幂级数弱McCoy环;(2)如果环R是一个诣零半交换环,则R[x]是幂级数弱McCoy环当且仅当R是幂级数弱McCoy环;(3)设环R是一个α-相容的诣零半交换环,则R[x;α]是幂级数弱McCoy环。  相似文献   

9.
讨论了素环理想上导子的性质,推广改进了文献[4],[5]中的结果.证明了下面定理,设R是2-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2·d(x)∈Z且Z∩I≠{0}x2,则环R为交换环.  相似文献   

10.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(xn)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

11.
素环上的导子   总被引:2,自引:1,他引:1  
设R是中心为Z、 扩张形心为C的素环, 证明了 : (1) 设f(x),g(x)为R上非零导子, 若af(x)+bg(x)亦是R上导子, 且在R上交换, 则f(x)=λx+ζ(x), g(x)=λ′x+ζ′(x), 其中λ,λ′∈C, ζ,ζ′: R→C加性映射; (2) 设R是环, 双加性映射G: R×R→R是R上对称双导子, 若[G(x,x),x]∈Z, char R≠2, 则R是 交换的; (3) 若R是char R≠2的素环, d1,d2是R上非零导子, 且d< sub>1d2(R)∈Z, 则R是交换的.  相似文献   

12.
讨论了素环理想上导子的性质.设R是6-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2.d(x)∈Z且Z∩I≠{0},则环R为x交换环.  相似文献   

13.
设R是整环,X是R上的一个未定元,{Xλ}λ∈Λ是R上任意多个未定元的集合.证明了若R是UMT整环,则w-dimR=w-dim(R[{Xλ}λ∈Λ]).进一步研究了UMT整环上的群环,证明了若R是UMT整环,则w-dimR=w-dimR[X;G].  相似文献   

14.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(x^n)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

15.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

16.
给出了Jacobson半单纯环的一个交换性定理,推广了文献[1],[2],[3]中的结果.证明了下面定理,设R为Jacobson半单纯环,Z(R)为其中心,k∈Z^ ,2,3不整除k.如果对每一y∈R有依赖于y的非负整数δ=δ(y),δ=m,n,s,t及fy(t)∈t^2Z[t]使A↓x∈R有:[x^k,x^s(y)yx^t(y)-x^m(y)fy(y)x^n(y)]∈Z(R),那么R为交换环.  相似文献   

17.
推广了名的中山正(Nakyama)引理。证明了:若I是有单位元的交换环R的理想,M是有限生成R-模,若有r∈R使rM=IM,则r∈√Amm(M) 1。推出了中山正引理,并在交换整环的情形下得到削弱了假定条件的中山正引理。  相似文献   

18.
半质环的两个交换性定理   总被引:2,自引:2,他引:0  
证明了满足下列条件的半质环是交换环: 1)若对x,y,z∈R,存在整数m=m(x,z)>1,n=n(x,z)>1,使得[(xmy)n-xym,z]∈Z(R)则R为交换环.2)若对x,y,z∈R,存在整数m=m(y,z)>1,n=n(y,z)>1,使得[(xmy)n+xmy,z]∈Z(R)则R为交换环.  相似文献   

19.
零因子理想     
设R为交换环,a≠0∈R,取,则显然I_a为R中理想,且I_a≠0当且仅当a为R中零因子。记Z(R)为R中零因子集,一般Z(R)不一定是R中的理想,因Z(R)不一定关于加减法封闭,本文给出Z(R)为理想的条件。定理1 设R为交换环,如任取a,b∈Z(R),有,则Z(R)为R的理想。证由条件,有  相似文献   

20.
推广了弱对称环的概念,研究了具有弱对称自同态α的环,称为弱对称α-环,讨论弱对称α-环与相关环的关系,研究了弱对称α-环的一些扩张性质。证明了:(1)设α是环R的自同态,则R是α-rigid环当且仅当R是弱对称α-环,且由aRα(a)∈nil(R)可推出a=0,对任何a∈R;(2)设R是半交换环,α是R的自同态,则R是弱对称α-环当且仅当R[ x]是弱α珔-sy环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号