首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
汶川地震的岩石圈深部结构与动力学背景   总被引:42,自引:0,他引:42  
中国西部地区由于受到印度板块向北推移挤压,青藏高原强烈变形,高原内部及其边缘的活断层上经常发生强烈地震,是大陆内部最活跃的地震区.汶川8级地震就发生在青藏高原东缘的松潘一甘孜地块与扬子地块交界的龙门山主中央断裂带上.作者利用面波层析成像、跨龙门山的被动源地震观测、爆破地震剖面的结果对震源附近的岩石圈结构和动力学特征进行研究,发现松潘一甘孜地块与扬子地块的岩石圈结构与性质有重大差异.扬子地块岩石圈显示为高速、坚固和稳定特性,而松潘-甘孜地块为低速、软弱及易于破碎.在松潘-甘孜地块中,中地壳内普遍存在一个低速层,它是引起中上地亮推覆运动的滑脱层,龙门山的推覆构造就是上部地壳仰冲的结果.汶川地震震源深度为14 km,正好位于龙门山推覆体的映秀-北川主中央断裂带上.  相似文献   

2.
龙门山逆冲构造带大地电磁测深初步成果   总被引:11,自引:0,他引:11  
通过对穿过龙门山逆冲构造带中段松潘一中江大地电磁观测资料的处理和反演解释,揭示了松潘-甘孜褶皱带、龙门山及川西前陆盆地30 km深度的地壳电性结构,发现龙门山-松潘地壳15~20 km深部存在西倾连续的壳内商导层,大地电磁测深结果明显显示龙门山深部逆冲推覆构造特征.龙门山深部电性结构初步研究,对于分析其与相邻构造单元的关系,研究青藏高原东缘陆内造山带深部地球动力学过程都具有重要理论意义.  相似文献   

3.
基于中国地震局地质研究所在中国四川西部布设的流动地震观测台阵数据,用近年发展起来的虚拟地表震源反射测深方法研究川滇地区的地壳结构。结果表明,川滇地块、松潘-甘孜地块和杨子地块3个地块虚拟地表震源反射测深的莫霍面深度存在明显差异:1)四川盆地为40 km左右;2)川滇地块为45~50 km;3)松潘-甘孜地块为30~40 km。四川盆地虚拟地表震源反射测深的莫霍面深度与艾里重力均衡模型所预测的结果基本上一致,而川滇地块和松潘-甘孜地块虚拟地表震源反射测深的莫霍面深度明显小于前人得到的接收函数莫霍面深度和艾里重力均衡模型预测的结果。可能与四川盆地地壳结构简单,而川滇地块及松潘-甘孜地块地壳结构复杂有关。同时,结果显示,在鲜水河断裂和安宁河断裂处虚拟地表震源反射测深的莫霍面深度明显变浅,可能与这些深大断裂处地幔物质的上涌有关。研究结果可为认识青藏高原东南缘的构造变形模式提供新的约束。  相似文献   

4.
龙门山造山带构造演化模式的建立   总被引:6,自引:4,他引:2  
龙门山造山带是扬子板块的西延部分,主要受到3条断裂的控制,分别是汶川-茂汶断裂、北川-映秀断裂和江油-灌县断裂.在扬子板块与松潘-阿坝地块的挤压下,龙门山于印支晚期开始褶皱隆升造山,在造山的过程中控制造山带的3条主要断层由正断层转换成为逆断层.综合前人的观点,通过野外基础地质调查并利用平衡剖面法恢复了龙门山的造山过程,并建立了造山带构造演化模式.结果表明,龙门山在造山初期主要是受到北西方向力的作用;晚三叠世末期主要受到由于东南方向太平洋板块的挤压而迫使扬子板块挤压的应力作用;燕山期龙门山造山带继承了印支期的逆冲推覆构造作用继续上升;喜玛拉雅期推覆构造进一步发展,在推覆构造活动加剧的同时,由于重力作用,使被推到高处的不稳定岩体大量下滑,形成滑覆体和推覆体叠加的构造格局,最终演化为现今的构造样式.  相似文献   

5.
龙门山造山带是扬子板块的西延部分,主要受到3条断裂的控制,分别是汶川-茂汶断裂、北川-映秀断裂和江油-灌县断裂.在扬子板块与松潘-阿坝地块的挤压下,龙门山于印支晚期开始褶皱隆升造山,在造山的过程中控制造山带的3条主要断层由正断层转换成为逆断层.综合前人的观点,通过野外基础地质调查并利用平衡剖面法恢复了龙门山的造山过程,并建立了造山带构造演化模式.结果表明,龙门山在造山初期主要是受到北西方向力的作用;晚三叠世末期主要受到由于东南方向太平洋板块的挤压而迫使扬子板块挤压的应力作用;燕山期龙门山造山带继承了印支期的逆冲推覆构造作用继续上升;喜玛拉雅期推覆构造进一步发展,在推覆构造活动加剧的同时,由于重力作用,使被推到高处的不稳定岩体大量下滑,形成滑覆体和推覆体叠加的构造格局,最终演化为现今的构造样式.  相似文献   

6.
2008年的汶川地震为分析龙门山与四川盆地形成演化过程中的山-盆相互作用及其动力耦合机制提供了新的视角与依据.在总结分析龙门山与川西前陆盆地地层构造特点的基础上,从汶川地震的基本特征分析入手,探讨了龙门山与四川盆地的现代动力耦合作用机制及其对川西深层油气二次运移聚散的影响.龙门山的形成演化与地震孕育主要受其西侧松潘-甘孜地块的逆冲和其东侧四川盆地的俯冲的非对称相向挤压控制.龙门山南北两段的地质构造与构造动力环境有较大差异.龙门山晚三叠世开始隆升,其形成早于青藏高原的隆升,与印-亚板块的碰撞无关;但喜马拉雅期以来的演化受印-亚板块碰撞和太平洋板块俯冲的影响.龙门山的冲断褶皱变形垂直于山脉走向从西北向东南,即从松潘-甘孜地块向四川盆地逐渐扩展;平行于龙门山走向发育的断裂带控制川西油气聚散带的分布,前山断裂带上盘及以西地层中的油气基本散失,山前隐伏断裂带有利于深生浅储气藏的形成.  相似文献   

7.
四川冕宁尤黑木矿区位于扬子地台西缘康滇构造带北段与松潘-甘孜推覆造山带南段接合部的东侧。通过对尤黑木向形的几何结构样式及控矿特征分析,认为铜铁矿体作为相对坚硬岩层,在向形转折端整体构成一钩状褶皱形态,并进一步探讨了其成矿有利地段  相似文献   

8.
据地质和地球物理研究,作者提出“武当地块”是外来岩系组成的褶皱-逆冲推覆体,它是秦岭大型深层滑脱构造的一部分。武当山褶皱-逆冲推覆构造分四个构造带:主滑脱面—青峰断裂带、前缘叠瓦褶-断带、中央褶皱-推度带和后缘挤压-拉张带。在印支期,秦岭再生地槽-褶皱系的岩层和推覆体向南推覆到扬子地台之上,推覆距离约150km。它的发现和研究,为寻找与它有关的油气和固体矿产资源提供了新的思路和找矿方向。  相似文献   

9.
在龙门山的中段,四川盆地西缘的逆冲断层起源于紧靠汶川-茂汶断裂西侧的变质“根带”。汶川-茂汶断裂代表一条20~25km宽的剪切带的晚期脆性变形阶段。该剪切带活动于大约200Ma前的印支期。在汶川-茂汶剪切带北西侧的松潘-甘孜褶皱带中,印支期的NE-SW向挤压形成D_1逆冲断层,并被NW向F_2直立褶皱所叠加。当松潘-甘孜褶皱带受到D_1-D_2期缩短时,相邻的四川盆地并没有发生变形。两个地区的差异应变被发育于D_3的汶川-茂汶左行剪切带所容纳。松潘-甘孜褶皱带中持续的NE-SW向缩短导致了龙门山地区的SE向挤压。这种SE向挤压引起沿汶川-茂汶剪切带发生局部地壳加厚和巴罗型(Barrovian-type)变质作用。汶川-茂汶剪切带的运动学特点由D_3的左行剪切逐渐转变为D_4的SE向逆冲。这种逆冲作用引起了变质地区的初步隆起,以及龙门山地区第一期推覆体的就位。在印支期变形的后期(D_5),岩石发生褶皱并被花岗岩体侵入。现在的汶川-茂汶断裂位置是在更晚的变形阶段确立的。这个阶段的变形可能导致了彭灌基底杂岩沿着映秀-北川断裂发生隆起。在这一事件中,汶川-茂汶断裂是作为一条具有显著左行走滑分量的脆性正断层活动的。这一事件可能对应于龙门山地区的第二期推覆体运动,并且可能发生于侏罗纪—第三纪之间,或者是在喜马拉雅期。  相似文献   

10.
利用平均重力场与深部地壳测深资料估算了龙门山及邻区莫霍面的深度变化,表明龙门山地区正处于莫霍面由东南向西北的陡降带上。均衡重力异常计算结果显示该区为正异常。对航磁异常的向上延拓反映出茂汶杂岩体是“无根”的。此外还应用角度平均径向能谱法反演了该区深部磁性基岩的顶面与底面深度。结果表明,龙门山地区上地壳是由若干块体拼合而成的,川西拗陷带内的磁性界面呈现出向龙门山地腹下插的格局。  相似文献   

11.
为了进一步探讨龙门山断裂带深部结构,根据四川省地震局提供的地震原始资料,采用Hypo 2000对汶川大地震以及震后M≥2.0级余震进行重新定位。从2008年5月12日汶川发生8.0级大地震后,截止到2011年4月15日,获得了26 278个地震记录。重新定位后对结果的总结为:(1)主震发生在龙门山推覆构造带中央断裂中段的北川-映秀断裂上,余震主要沿龙门山断裂带方向延伸,呈南北分段分布。重新定位后的到时残差为±0.35s,水平误差为±1.32km,深度误差为±5km。(2)在主震附近的映秀、理县和黑水有一条北西向的余震带与龙门山断裂带的捩断层一致。(3)在青川附近(龙门山断裂带的北端),此段成为余震密集地区,这与历史上此地很少有地震发生不吻合。  相似文献   

12.
Crustal structure of the southeastern margin of the Ordos Block   总被引:2,自引:0,他引:2  
Lu  YiFeng  Xu  MingJie  Wang  LiangShu  Mi  Ning  Li  Hua  Yu  DaYong 《科学通报(英文版)》2011,56(35):3854-3859
We use a profile made up of teleseismic receiver functions to study the crustal thickness and structure of the southeastern margin of the Ordos Block.The Mohorovii discontinuity(Moho) has been identified beneath all stations.Its depth gradually decreases towards the southeast,from about 43 km in the Ordos Block to ~30 km near the northern margin of the Qinling Orogen.Our results show clear lateral variations in the structure of the crust and the features of the Moho.Accordingly,the study region can be divided into four parts:(1) Beneath the Ordos Block,the Moho is visible and flat at a depth of ~40 km.The crustal structure is best characterized by stable cratonic crust.(2) In the Weihe-Shanxi Graben,the Moho is uplifted by about 3 km,which may be the result of upwelling of upper mantle materials.(3) Under the Xionger-Funiu Mountains,the Moho is flat at a depth between 36 and 33 km,but becomes shallower towards the southeast.(4) In the Hehuai Basin,adjacent to the northern margin of the Qinling Orogen,the Moho shows strong lateral variations with a mean depth of ~31 km.The crustal structure here is complex,which may indicate a complicated tectonic environment.Additionally,the Moho is clearly interrupted at two locations(beneath stations st11 and st18) near major tectonic boundaries.These results suggest that the structure of the deep crust along the southeastern margin of the Ordos Block has great lateral variability,which strongly affects the complex geological features on the surface.Furthermore,these results can help us understand the interrelationships of different parts of the southeastern margin of the Ordos Block.  相似文献   

13.
By processing the CSND Rayleigh wave data with the matched filter FTAN technique, Rayleigh wave disper- sion for southeast China is obtained. The 4°×4°S wave dispersion of the pure path is calculated using random inversion scheme, and 3-D S wave velocity structure is set up. Incorporating the above-mentioned results with wide angle seismic sounding data, we studied structure framework and the extending of faults in this area, which demonstrates that the depth of Moho in South China varies from 30 to 40 km, shallower from west to east. The depth of Moho varies from 25 to 28 km for the offshore. The depth of the asthenosphere in upper mantle varies from 60 to 100 km. The depth difference of layers at the two sides of Tanlu fault is more than 10 km at the south part of the Yangtze River, and the fault extends downward more than 170 km. The fault exceeds the main land at Hainan Island and slips into the southern China Sea. Both Tanlu fault and the huge bend of gravity gradient anomaly are influenced by deep latent tectonics.  相似文献   

14.
A deep seismic sounding profile across the Tianshan Mountains   总被引:5,自引:0,他引:5  
The deep seismic sounding profile across the Tianshan Mountains revealed a two-layer crustal structure in the Tianshregion, namely the lower and upper crusts. Lateral variations of layer velocity and thickness are evidently shown. Low-velocity layers spread discontinuously at the bottom of the upper crust. The Moho depth is 47 km in the Kuytun area and 50 km in the Xayar area. In the Tianshan Mountains, the Moho becomes deeper with the maximum depth of 62 km around the boundary between the southern and northern Tianshan Mountains. The average velocity ranges from 6.1 to 6.3 km/s in the crust and 8.15 km/s at the top of the upper mantle. Two groups of reliable reflective seismic phases of the Moho (Pm1 and Pm2) are recognized on the shot record section of the Kuytun area. A staked and offset region, 20-30 km long, is displayed within a shot-geophone distance of 190-210 km in Pm1 and Pm2. Calculation shows that the Moho is offset by 10 km in the northern Tianshan region, 62 km deep in the south while 52 km deep in the north, and plunges northwards. In comparison with typical collisional orogenic belts, the structure of the Moho beneath the Tianshan Mountains presents a similar pattern. This can be used to explain the subduction of the Tarim plate towards the Tianshan Mountains. This intracontinental subduction is considered the dynamic mechanism of the Cenozoic uplifting of the Tianshan Mountains. The discovery of seismic phases Pm1 and Pm2 serves as the seismological evidence for the northward subduction of the Tarim plate.  相似文献   

15.
Ran  YongKang  Shi  Xiang  Wang  Hu  Chen  LiChun  Chen  Jie  Liu  RuiChun  Gong  Huiling 《科学通报(英文版)》2010,55(9):841-850
The amount of coseismic deformation and its distribution of the Wenchuan earthquake provide important scientific bases for revealing the mechanisms of earthquake preparation and characterizing the rupture propagation of the Wenchuan earthquake. The previous studies have indicated that the earthquake ruptured the middle-to-north segment of the Longmenshan central fault and the middle segment of the Longmenshan range-front fault, which are characterized by two surface rupture zones of 240 km and 90 km in length, respectively. Based on the pre-earthquake information and photos of landforms and buildings obtained through ge-ologic and geomorphic survey of the area around Shaba Village of Beichuan County, Sichuan Province and the extensive interview with local villagers, we measured the displacements of the major terrain features and the dislocated buildings by total station instruments and differential GPS and obtained the maximum vertical displacement of 9±0.5 m and right-lateral displacement of 2±0.5 m around the Zou’s house in Shaba Village. Though the near-surface deformation exhibits a normal faulting around Shaba Village, the dynamic environment has not changed on the whole. The NW wall of the fault uplifted but without gravity gliding as normally occurring on the hanging wall of a normal fault, which proves that the 9±0.5 m displacement should be the maximum coseismic vertical displacement of the May 12, 2008 Ms 8.0 Wenchuan earthquake.  相似文献   

16.
利用接收函数方法研究大盈江断裂两侧S波速度结构   总被引:2,自引:0,他引:2  
 利用研究区(24.2°~25.2°N,97.5°~98.5°E)内大盈江断裂两侧5个流动数字地震台站记录到的宽频带远震P波波形数据进行接收函数反演,得到台站下方0~100km深度范围内地壳、上地幔S波速度细结构.结果表明:研究区内,以大盈江断裂为界,其西北侧Moho面深度约为38km;东南侧Moho面深度为40~42km.断裂两侧地壳、上地幔S波速度结构存在显著差异,东南侧台站下方地壳和上地幔均存在大范围低速区;西北侧台站下方地壳内存在低速层,而上地幔中无明显低速层.研究区内的S波速度结构存在明显的横向非均匀性.  相似文献   

17.
A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0--80 km.Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4--6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally appears as a velocity transitional zone except beneath two stations in the northern Tarim Basin, where the Moho is characterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental mountain-basin-coupling system.  相似文献   

18.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovici? discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.  相似文献   

19.
The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35―48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic(HPM) and ultra-high-pressure metamorphic(UHPM) terran...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号