首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
旨在考察电磁制动对薄板坯连铸结晶器内钢液流动及传热的影响效果,从而为CSP薄板坯连铸生产实践提供理论参考。根据国内某钢厂CSP薄板坯连铸漏斗形结晶器、水口结构参数,首先建立了描述结晶器内钢液流动和传热的三维数学模型,应用CFD软件对结晶器内钢液的流场和温度场、凝固现象进行耦合计算和分析。再耦合经实测数据验证由ANSYS模拟得出的电磁场,计算和分析电磁制动下结晶器内钢液各种现象的变化。结果表明:电磁制动的应用,使结晶器钢液面上的速度降低,由无电磁时的0.13 m/s降到0.10 m/s,降幅在23%左右;使向下的流股冲击深度降低;使结晶器钢液面上温度升高5℃左右,有利于保护渣的熔化。  相似文献   

2.
本文采用FLUENT商业软件对中薄板坯结晶器内流体流动和热量传输进行数值模拟,建立了描述结晶器内钢液流动的三维数学模型,系统分析连铸速度、浸入深度等工艺参数对钢液流动的影响,为实际生产提供理论基础.  相似文献   

3.
板坯连铸结晶器内钢液流场的三维数学模型   总被引:16,自引:0,他引:16  
针对板坯连铸结晶器中钢液的紊流流动特征,利用流场计算软件cfx4.3,建立了一个三维有限差分模型,模拟了结晶器内钢液的流场和流动分布,同时应用水利学模型进行了验证。通过数值计算,研究了浸入式水口的出口倾角、浸入深度、拉速等工艺参数对板坏连铸结晶器流场的影响,为优化结晶器内钢液的流场,优化浸入式水口的设计提供了理论基础。  相似文献   

4.
连铸结晶器中钢液三维紊流流动的数值模拟   总被引:2,自引:0,他引:2  
针对连铸结晶器中钢液的紊流流动特点,建立了有限元求解这一限定空间射流的三维紊流时均场的方法,用水模拟试验结果验证了文中所用模型和计算方法的可靠性,且对实际工况条件下的板坯连铸结晶器中的三维紊流流动进行了模拟计算.其方法可用于分析各种结晶器液池中的流动特征,并为凝固壳厚度的模拟计算和板坯质量控制奠定了基础.此外,指出了前人计算中在边界条件上的不合理性  相似文献   

5.
薄板坯结晶器内卷渣现象的研究   总被引:9,自引:0,他引:9  
基于相似原理,采用1:1的水模型,模拟了薄板坯连铸结晶器内钢液-保护渣界面的流场,通过采用SG200水工数据采集系统对液面波动进行了定理测量。结合流场显示研究了薄板坯连铸结晶器内钢液的卷渣机理,得出了薄板坯连铸结晶器内钢液的主要卷渣方式为旋涡卷渣和剪切卷渣。  相似文献   

6.
板坯连铸机结晶器内钢液流动的数值分析   总被引:5,自引:2,他引:5  
采用有限差分法和k-ε湍流模型对板坯连铸机结晶器内钢液的流动进行了数值计算。分析了双侧孔浸入式水口射流角度。连铸速度,以及水口浸入深度等操作和设计参数对流场的影响。  相似文献   

7.
板坯连铸浸入式水口出口速度对结晶器流场影响的数值模拟   总被引:19,自引:3,他引:19  
以宝钢-连铸板坯结晶器为研究对象,采用大型商业软件CFX4.3,将模拟计算出的浸入式水口的出口速度直接赋给结晶器作为入口条件,计算了结晶器内钢液的流动情况.结果表明:速度矢量在水口出口截面分布不均匀、方向与水口倾角不一致.因此,有必要将水口计算结果与结晶器模型结合起来以更好地反映钢液的流动情况.  相似文献   

8.
薄板坯连铸机新型浸入式水口   总被引:4,自引:0,他引:4  
基于相似原理,采用1:1的水模型,模拟了薄板坯连铸结晶器内钢液的流场.采用SG800水工数据采集系统对结晶器内液面波动和注流冲击深度进行了定量测量.针对薄板坯连铸高拉速的需要,开发了一种新型的耗散型浸入式水口.通过研究耗散水口上下出口面积比、出口角度以及拉坯速度对结晶器液面波动和对结晶器窄边冲击情况的影响,找出了其中的变化规律,为优化耗散式水口的结构和工艺参数提供了理论依据.通过与普通双侧孔水口的试验比较,证明耗散型水口是一种适合薄板坯连铸高拉速生产的新型水口.  相似文献   

9.
利用粒子图像测速技术,以200 mm×2040 mm板坯连铸结晶器为原型,建立1:4水模型进行实验,对结晶器内钢液流动形态、流速及各流态所占比例、液面波动、以水口为中心结晶器两侧对称点速度随时间的变化、水口两侧液面水平流速、水口两侧对称位置液面至结晶器底部垂直方向速度和钢液对两侧窄面的冲击深度进行系统地研究和分析,并对比拉速的影响.研究表明,粒子图像测速技术不仅可以测量结晶器内流场流速,还可以对流场对称性进行全方位、多角度定量分析,为研究连铸参数变化,比如拉速、水口结构和水口浸入深度,对板坯连铸结晶器内钢液流动及对称性的影响提供一种较为精确的方法和思路.通过分析得出,在本实验条件下拉速0.5 m·min-1优于0.6 m·min-1.  相似文献   

10.
连铸结晶器中三维紊流场的层流等效模型   总被引:7,自引:0,他引:7  
在揭示了板坯连铸结晶器中三维紊流流场和紊流粘性系数分布规律的基础上,提出了分区选定有效粘性系数的层流等效模型,计算表明,所建立的模型可获得定量和定性上与K-ε两方程紊流模型基本一致的流场,但大大简化了计算,在计算精度基本上不降低的条件下,可大幅度降低计算成本,文章采用流动与温度场非耦合方法,将凝固壳内的区域作为流场计算域,考虑了凝固壳厚度分布对流场的影响,使该方法更为合理地用于连铸结晶器中流动与凝  相似文献   

11.
薄板坯连铸伸入式水口的研究   总被引:1,自引:0,他引:1  
针对直-弧型结晶器和超薄型伸入式水口浇注薄板坯的工艺特点,对结晶器内钢液流动规律和寻求合理的伸入式水口结构形式进行了物理模拟。通过水模试验,研究了几种典型水口结构下的结晶器内流体运动状态,以求优选出较理想的水口结构和尺寸。  相似文献   

12.
连铸结晶器内三维流动过程的数值计算方法   总被引:4,自引:0,他引:4  
应用数学物理模拟方法,对板坯连铸结晶器内的钢流流动现象进行了俩面说细的研究,同时,还研究了不同工艺参数对结晶器内流场的影响,在此基础上,开发了应用微机计算三维两相流动的模拟软件,计算机结果与激光测速结果对比分析,证明该软件是可靠的,能用于预测结晶器流场和设计水口的工艺参数,数学模型中对壁面函数方法,压力降阶法等的处理提出了新见解,在此基础上研制了一种新型改进型水口,并作了初步工业实验,效果良好。.  相似文献   

13.
薄板坯保护渣的材料组成与其消耗量有很强的依赖关系,根据保护渣流淌长度与消耗量的正比关系,自行设计一种研究薄板坯连铸保护渣消耗量新实验方法。实验通过调节Li2CO3、NaF、Na2CO3、CaF2及人造冰晶石的质量分数及保护渣的碱度,测得了不同含量助熔剂情况下的保护渣的粘度和流淌长度。实验结果表明,助熔剂含量增加以后,保护渣粘度显著降低,流淌长度也得到了明显的增加;各种助熔剂对增加流淌长度的次序,即影响消耗量的次序为Li2CO3>NaF>Na2CO3>人造冰晶石>CaF2。  相似文献   

14.
FTSC薄板坯连铸结晶器内钢水凝固传热的数学模拟   总被引:1,自引:0,他引:1  
建立FTSC薄板坯连铸结晶器内铸坯的凝固传热模型,对凝固传热方程进行了离散化,应用大型有限元软件ANSYS对钢水凝固传热过程进行模拟求解,描述了凝固坯壳的温度分布与坯壳生长历程。模拟结果与连铸实际过程基本一致为制定合理的工艺参数、提高铸坯质量、减少漏钢发生提供了理论依据。  相似文献   

15.
旋转连铸结晶器内钢液流动特性   总被引:1,自引:0,他引:1  
将质量守恒方程及NavierStokes方程应用于旋转连铸结晶器内钢液流动特性研究,探查了结晶器转速、水口注流流量、水口浸入深度对流场的影响·模拟计算结果表明,随着转速、水口注流流量、水口浸入深度的变化,回流区发生移动,流场分布受水口注流流量、转速的影响较大·  相似文献   

16.
结晶器是钢水凝固成型的核心设备,其内部的传热和摩擦直接决定铸坯的表面裂纹和满钢等各类异常.是实现高效连铸的关键因素.基于功率法检测到的板坯结晶器摩擦力实测数据,对摩擦力的异常预报方法进行了研究.建立了以BP人工神经网络为基础的异常预报模型,并开发出相应软件.对应现场的异常记录,离线预报结果表明:软件能够对满钢、水口断裂及液位波动等各类异常进行预报,并具有一定的预报提前量.证明了方法的可行性,并显示出极大的应用潜力.  相似文献   

17.
分析研究了轴向流中简支弹性薄板大挠度流固耦合系统的振动响应和流场特性.板结构动力学方程采用基于位移的有限元法离散;流场采用二维不可压缩粘性流体N-S方程,并用有限体积法离散;在此基础上结合动网格控制技术,建立模拟双向流固耦合作用下轴向流中简支弹性薄板的二维数值模型.利用该数值模型得到了单块简支板随流速变化流致振动特性,研究了结构大挠度的振动稳定性,分别得到了Pitchfork分岔曲线和非线性系统结构的Hopf分叉曲线.通过轴向流恒定流速下不同间距的平行两块简支弹性薄板流固耦合的数值模拟得到了的流致振动特性.  相似文献   

18.
SiC_p/A356铝合金复合材料触变挤压研究   总被引:1,自引:0,他引:1  
采用有限元软件DEFORM-3DTM模拟SiCp/A356铝合金复合材料电子封装壳体的成形过程,应用等温压缩实验数据分析材料模型触变成形过程中金属流动速度场和温度场分布,并对可能产生的成形缺陷进行预测.研究发现,一模四件的模型更适合半固态触变成形,缺陷可能出现在最后成形的成形件侧棱两角.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号