首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研制车体交变气动载荷试验装置,利用该装置对新造车体进行疲劳强度试验,讨论车体交变气动载荷疲劳试验加载方法、压力、压力波形与周期、加载次数等参数,并完成车体交变气动载荷疲劳试验装置方案及数据采集系统方案设计;将合武铁路现场测得的CRH2型动车组以250 km/h速度过隧道时车内外压力差曲线与该试验装置测得的压力曲线进行比较。研究结果表明:车内外压力差曲线与该试验装置测得的压力曲线基本吻合,该试验装置可真实模拟列车高速通过隧道时车体承受的交变气动载荷,为研究新造高速列车车体在交变气动载荷作用下的疲劳强度特性提供了重要的试验手段,建议我国新造车体按其实际运行过程中承受的交变气动载荷加载进行疲劳强度试验。  相似文献   

2.
为更真实地分析大风对列车运行安全的影响,建立列车空气动力学及其对应的系统动力学模型。基于目前高速铁路线路大风监测点风速研究路堤上高速列车的强横风运行安全性。首先针对不同高度的路堤,研究远场气象风速与高速铁路大风监测点风速之间的关系;然后,以大风监测点风速为参考风速,分析不同高度路堤上的高速列车气动载荷系数随侧偏角及路堤高度的变化规律;最后,将气动载荷作为外界载荷施加在系统动力学模型上,分析高速列车在不同高度路堤上的动力学指标变化情况,得到高速列车在不同路况条件下的运行安全域。研究结果表明:线路大风监测点风速近似与远方来流风速成正比,且比例系数随路堤高度增加而增大;当采用线路上大风监测点风速作为参考风速时,高速列车的气动载荷系数和运行安全指标均与路堤高度基本无关,避免了传统方法中采用远场风速作为参考风速而需计算大量不同路堤高度的情况。  相似文献   

3.
基于由3节车组成的CRH3和CRH-380型高速列车模型,在不同速度条件下,研究车轮旋转对高速列车及各部分气动阻力和升力的影响,以及车厢间风挡形式对各车厢和车厢连接处气动性能的影响。结果表明,车轮旋转的诱导效应对高速列车模型的全车及各部分气动阻力影响较小,对尾车、各转向架气动升力的影响较大。车厢间风挡形式对车厢的压差阻力和粘性阻力影响不大。相比于侧风挡,上下风挡对升力影响更大。建立适用于高速列车的二维模型的雨载荷计算方法。在降雨和无雨条件下,模型所受横向力、升力和翻滚力矩均随横风风速的增大而增大。相比于无雨条件,降雨时模型所受的总横向力和翻滚力矩明显增大,且随降雨强度的增大相应增大。升力在降雨和无雨时变化不大,且随降雨强度的增大总升力略有下降。采用非定常数值模拟方法系统研究了复杂外形高速列车的底部流动特性,并针对列车转向架中的旋转结构对于底部流动特性的影响进行了对比分析。列车底部结构的气动阻力是整车气动阻力的重要组成,列车底部结构的气动载荷对于整车的气动载荷具有重要影响。轮对的旋转效应会对列车气动载荷的非定常特性产生很大影响。基于替代模拟技术和多目标遗传算法进行了高速列车头型多目标有约束气动外形优化设计的研究,首先采用增量叠加参数化方法对高速列车头型进行参数化设计,然后以列车气动阻力和尾车气动升力为优化目标,得到了Pareto最优解集。基于压力波的形成机理和初始压缩波的经验公式,建立了压力波的"波叠加"的解析分析方法。研究表明一维流动模型和波叠加法能够快速得出多参数下的压力波的平均特性和最不利隧道长度等。三维流动模型能够得到细致的压力波形成机理和列车外部压力的三维特征。波叠加法可作为校验数值方法的一种理论方法和快速进行大量不同列车与隧道参数的比较性研究工具。  相似文献   

4.
该研究的总体研究目标是弄清楚在气动作用下高速列车整车与关键零部件的动力学响应特征以及对运行速度提升后出现的新现象的规律分析与总结。前期主要研究工作是针对气动-轮轨联合作用条件下高速列车动力学响应分析建立分析方法与仿真模型,分析、整理与总结实车实测数据规律,发现新现象,为计算分析模型提供相关的验证数据与条件。后期研究主要是对分析方法与计算模型的改进、完善与检验,对出现的新现象规律进行总结。后期的4项研究内容为:(1)考虑流固耦合的列车刚体动力学分析模型研究;(2)考虑流固耦合的列车刚柔体动力学分析模型研究;(3)气动载荷作用下高速列车车体振动行为及动态响应研究;(4)关键结构疲劳可靠性分析。该研究主要阐述2013年度取得的主要研究进展与阶段性成果。针对上述研究内容,主要研究成果包括:建立了高速列车流固耦合、刚柔耦合仿真模型;建立考虑一系悬挂质量效应与车体弹性的动态响应仿真模型;提出了增量谐波平衡法与线性频响函数法相结合求解高速列车系统稳态解的方法及轨道动态不平顺模拟方法;分析了考虑轨道不平顺作用下,气动载荷对高速列车直线与曲线通过时的动力学响应的影响;获得了高速列车车体振动响应随运行速度的变化特征;对高速列车系统中的内共振现象进行解释与分析;研究了高速列车侧窗受交会压力波作用下的动态响应;分析了高速列车裙板结构在气动载荷作用下的动态响应及颤振行为。  相似文献   

5.
高速列车运行产生强交变气动载荷,会导致列车铆钉、螺栓等连接结构件疲劳失效,该文针对高速列车底板铆钉结构的气动疲劳问题,提出底板/铆钉/骨架梁耦合分区气动加载的应力有限元解算模型;采用双向同步导压的差压测量方法,获得了武汉-广州交路的底板结构气动载荷谱,采用雨流计数与累积损伤准则对铆钉结构进行疲劳损伤评估.结果显示,当高...  相似文献   

6.
基于三维非定常可压缩N-S方程和RNG k-ε两方程湍流模型,对顺弓、逆弓运行状态,隧道有效净空面积,隧道长度等因素影响下,高速列车进出隧道口受电弓气动载荷进行数值模拟研究。研究结果表明:数值计算得到的车体表面测点压力曲线变化规律与动模型试验结果完全一致,幅值相差在3%以内;列车进出隧道口时,受电弓弓头受交变载荷的作用,气动抬升力曲线将分别出现正负向脉冲波形;受电弓顺弓、逆弓运行时弓头气动抬升力差异明显,顺弓运行时正向峰值相对较大,而负向峰值明显更小;隧道有效净空面积减小时,弓头气动抬升力波动幅度明显增大;隧道长度的变化对列车进入隧道时弓头气动抬升力基本无影响,但对列车驶出隧道时气动抬升力变化特征影响显著。  相似文献   

7.
根据风力机的气动理论,并考虑风切变和风力机结构、几何参数的影响,建立了风力机叶片的气动载荷计算模型。以基本风速、渐变风速、阵风风速和脉动风速4种风速类型建立了变风速模型,并应用于叶片载荷计算模型,实现变风速下的叶片气动载荷的计算。以某MW级风力机为对象,给出了数值计算流程并进行了实例计算,结果显示:风力机叶片的气动载荷主要分布在叶片的中段和叶尖,且载荷大小随风速起伏变化,叶根的气动载荷随风速变化的趋势不明显,风速较大时,叶片上的载荷波动较为显著。结果可为叶片的结构设计和动力学分析提供参考。  相似文献   

8.
针对高速列车外流场气动噪声完成了在线实验测试研究,对列车模型进行了简化并确定了合理性;进行了列车模型湍流流场模拟,完成了列车远场气动噪声的预测研究.研究表明,合理缩短列车不会改变车身表面声功率分布规律;高速列车气动噪声属于宽频带噪声;在频率范围(0~ 5000Hz)内气动噪声仿真与实验结果吻合较好,说明仿真方法准确度高;列车转向架处湍流最为剧烈,其次为车头鼻锥处;车身表面的气流最为平缓,进一步说明缩短列车模型的合理性.所提出的仿真方法能够为高速列车的结构优化设计提供依据,并能验证高速列车气动噪声控制方法的有效性.  相似文献   

9.
基于自回归(AR)模型考虑空间相关性,对张弦梁结构的随机脉动风进行数值模拟;利用有限元软件AN-SYS,考虑风速与结构速度的耦合作用,以材料阻尼模拟气动阻尼对结构进行风振响应分析,求得结构时程响应曲线;脉动风速样本的功率谱与目标功率谱比较结果吻合良好,表明所采用的随机过程模拟理论可靠,风速时程数据的计算机仿真程序有效;同时探讨参数变化对结构风振响应的影响.  相似文献   

10.
建立了高架线和路堤两种不同路况下侧风作用于列车的空气动力学模型,并进行数值计算,得到了不同侧风速和不同运行速度下列车周围压强分布及列车的气动载荷特性;同时利用SIMPACK建立高速列车动力学模型,将分析得到的气动载荷施加到动力学模型上,计算列车运行的动力学特性,研究侧风对列车运行安全性的影响;参照高速列车运行安全性相关限定指标,计算了高速动车组侧风环境下的安全行车速度。  相似文献   

11.
基于三维、非定常、可压缩雷诺时均N-S方程和标准κ-ε双方程湍流模型,采用滑移网格方法,对列车通过隧道进入风区后,风-车-桥-地形耦合作用下高速列车气动性能进行模拟。模拟线路周围的复杂地形地貌,针对8节编组的和谐号高速列车以350 km/h速度在强侧风复杂地貌下的运行进行研究。研究结果表明:地形显著改变沿线风速分布情况,并通过改变风速来影响列车气动性能;列车在驶出隧道突入风区时气动力急剧增加。此后,列车沿风区线路运行时,所受侧向力变化明显,其中头车侧向力变化最小,尾车最大;与侧向力相比列车升力变化不明显,头车升力变化最大,尾车升力变化最小。通过对沿线风速的监测,可知地形对沿线风速改变显著。  相似文献   

12.
以Y型声屏障为研究对象,建立高速列车?声屏障流体动力学和有限元仿真模型,模拟列车进出声屏障区域全过程,从列车速度、声屏障?列车距离、声屏障折板角度等因素研究Y型声屏障的动态响应特性.研究结果表明:当列车通过声屏障时,脉动风压呈明显的头波和尾波效应;沿高度方向脉动风压自下而上减小,在Y型折板处急剧下降,底部脉动风压约为顶...  相似文献   

13.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

14.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

15.
为了研究随机风载下高速列车的动力学特性,提出一种随机风环境下高速列车安全平稳性评估方法。基于Kármán理论和Davenport相干函数通过谐波合成法建立随机风数值模拟模型,并推导随机风作用下的高速列车非定常气动载荷的计算公式。通过SIMPACK建立车辆系统动力学模型,计算不同随机风载作用下的高速列车以不同车速运行过程中的安全性指标及平稳性指标。最后,本文选择了包括脱轨系数、轮重减载率、轮轴横向力、Sperling平稳性指标在内的多性能指标作为目标来支持决策。通过仿真对多性能指标进行评价,验证了该模型在强风下高速列车运行动力学特性研究中的适用性。  相似文献   

16.
高速列车空气动力制动会车动力学性能   总被引:2,自引:0,他引:2  
采用流体力学模拟两列高速列车以400km·h-1速度交会时工况,计算列车气动载荷,并结合高速列车动力学模型研究会车工况下制动风翼板开启对列车动力学性能及运行安全性影响.结果表明:交会时列车横向及垂向位移及振动加速度均增大;与未采用空气动力制动相比,制动风翼板开启后车体振动加速度、列车最大脱轨系数、轮重减载率等均发生变化,但其运行安全性指标均在合格范围内.  相似文献   

17.
高速铁路隧道混凝土衬砌结构含有初始孔隙或微裂纹等初始损伤。高速列车通过隧道所产生的气动疲劳载荷作用,使这种初始损伤会逐步扩展。选用混凝土的弹性模量衰减规律来反映气动疲劳载荷对隧道衬砌细观混凝土的作用效应,以弹性模量衰减的第二阶段为主要研究阶段,模拟了在循环气动载荷作用下,高速铁路隧道衬砌混凝土细观损伤机理及疲劳损伤裂纹的发展变化规律。研究表明:高速铁路隧道服役的中后期,气动疲劳载荷对隧道耐久性的危害作用更大。  相似文献   

18.
基于三维定常不可压缩雷诺时均N-S方程和κ-ε双方程湍流模型,对在20m/s风速下10m高路堤上以300km/h车速运行的三车编组高速列车气动性能进行了模拟,并对路堤边坡结构形式进行了设计与优化.数值算法经验证与试验规律基本一致,幅值相差不超过10%.结果表明:路堤两侧设计成台阶对于改善列车气动性能效果显著.位于路堤不同线路上列车气动力和力矩随边坡台阶高度变化规律基本一致;各节车对应的相对最优台阶高度以及其所受气动力及力矩随台阶高度变化规律存在明显差异;台阶高度在3~5m间的边坡设计对改善路堤上运行的列车气动性能具有明显效果.边坡两侧顶部设计成台阶有效改善了列车气动性能;路堤边坡底部设计成高度相对较大的台阶对路堤上运行的列车气动性能有一定改善.  相似文献   

19.
基于相似理论建立了槽式太阳能聚光器(PTSC)的相似模型并对其进行Fluent数值模拟、实验研究以及理论分析。首先,建立了全尺寸模型与相似模型之间的力与压强的相似关系;然后,对风场中的相似模型在各个风速以及仰角下的风压进行模拟计算以及分析;最后对风场中相似模型受到风压的情况进行风洞实验测试验证模拟结果。模拟与实验结果表明,模拟计算结果与风洞实验结果具有很好的吻合度,平均误差为16.7%,说明计算模型较准确,可对小型聚光器风载荷结果进行相似处理后即可得到大型聚光器风载荷分布特性。  相似文献   

20.
基于空气动力学理论,建立高速列车空气动力学模型,计算不同运行速度下高速列车在明线运行和明线横风场景下的气动力荷载。同时采用多体系统动力学理论,建立车辆多体动力学仿真模型。将气动荷载导入车辆仿真模型,计算在无横风和有横风条件下,列车以不同速度行驶时的车辆动力学响应及其安全性指标。获得在无横风和有横风条件下高速列车运行安全性随速度的变化规律。研究结果表明,横风作用将对列车的安全运行构成极大的威胁。参照有关高速列车运行安全性评定标准,给出15 m/s横风风速下高速列车安全运行的速度限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号