首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
设λ1,λ2,...,λn(可以相同)为实矩阵A的所有特征值,记为σ(A)=(λ1,λ2,...,λn).n阶符号模式矩阵S=(sij)是指元素取自{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈M\{n\}(R):对所有的i和j,sign(aij)=sij},记σ(S)={σ(A):A∈Q(S)}.设S为n阶符号模式矩阵,λ1,λ2,…,λn为n个任意复数,若λ1,λ2,…,λn中的虚数都与其共轭复数成对出现时,便存在A∈Q(S),使得σ(A)=(λ1,λ2,…,λn),则称S为谱任意模式.在本文中,我们得到两个谱任意模式.  相似文献   

2.
研究了满足ααi-1,j-1 βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n 1阶矩阵A=(αi,j)(n 1)-(n 1)的精确表达式.用数学归纳法证明(1-βx-axy)中一般项xiyi(i≥j)的系数为αjβi-j i n-1 n-1 ij.导出了一些有关二项式系数(nk)的新的组合恒等式.  相似文献   

3.
研究了满足ααi-1,j-1+βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n+1阶矩阵A=(αi,j)(n+1)×(n +1)的精确表达式.用数学归纳法证明(1-βx-αxy)-n中一般项xiyj(i≥j)的系数为αjβi-j(i+n-1/n-1)(i j).导出了一些有关二项式系数(n k)的新的组合恒等式.  相似文献   

4.
研究了满足ααi-1,j-1+βαi-1,j=αi,j的序列{αi,j}.用发生函数法得到了n+1阶矩阵A=(αi,j)(n+1)×(n +1)的精确表达式.用数学归纳法证明(1-βx-αxy)-n中一般项xiyj(i≥j)的系数为αjβi-j(i+n-1/n-1)(i j).导出了一些有关二项式系数(n k)的新的组合恒等式.  相似文献   

5.
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(aij),B=(bij)(M-1满足aji=bij=0,i-j≥3,则对任意H1,H2∈S3,AB和(AH1)(BH2)都是五对角线逆M矩阵.  相似文献   

6.
令ω_0是矩阵 A=(a_(ij mxn)的最小特征值,且 AX_0=ω_0X_0,p_i=|aij|,M(i.j)=1/2{aij+aii-[(aii-ajj)~2+4PiPj]~(1/2)},M~*(i,j)=1/2{aii+ajj-[(aii-ajj)~2+4|aij·aji|]~(1/2)}r=(aii-p_i),R=(aii-p_i),m=M(i,j)M=M(i,j),m~*=M~*(i,j),我们在文中将证明:如果存在一个符号矩阵 S(由1和-1构成的对角阵),使得=SAS 为一个不可约非奇 M—矩阵,则有下列结论成立:(1) ω_0是正实单根,且 X_0=Sx_0是正向量。(2) ω_0相似文献   

7.
α-双对角占优与H矩阵的判定   总被引:10,自引:0,他引:10  
设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有|aiiajj|≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.|aii|>(Πi∈νi∈νi∈ν  相似文献   

8.
本文利用矩阵块对角占优的性质,给出矩阵非奇异的几个判定条件。下面用 R~(n×n)表示 n 阶实方阵的全体,用 C~(n×n)表示 n 阶复方阵的全体,并令,Z~(n×n)={A=(a_(ij))∈R~(n×n)|a_(ij)|≤0,i≠j,1≤i,j≤n}若 A 是非奇异 M 一矩阵。则记 A∈M.引理1 设 A=(a_(ij))∈Z~(n×n),且 A_(ij)>0,1≤i≤n,令 A =,则 A∈M  相似文献   

9.
设(U,p)是偏序为p的偏序集,U是格,f是定义在U上的正实函数,矩阵[S]f=(sij)n×n,sij=f((xi,xj)p),而(xi,xj)p是xi,xj在格U中的交,xi,xj∈S,1≤i,j≤n.ΨS,f是定义在S上的一个广义欧拉函数,这里主要是得到det[S]f与ΨS,f之间的一些关系。  相似文献   

10.
设Bm×n是所有m×n布尔矩阵的集合,R(A)为A∈Bn的行空间,|R(A)|表示行空间R(A)的基数,m,n是正整数,k为非负整数.证明了如下3个结果:(1) 设A∈Bm×n,m,(ⅰ) 如果A是幂等矩阵,即A2=A,那么|R(Am)|=|R(A)| ;(ⅱ) 如果A是对合矩阵,即A2=I,那么当m是奇数时,|R(Am)|=|R(A)|,当m是偶数时|R(A)|=2n.(2) 设A∈Bm×n,A含1的元素个数为k,0≤k≤min{m,n},且A的每行每列元素中1的元素个数最多为1,那么|R(A)|=2k.(3) 若A∈Bm×n是形如A=(O OO A1)的分块矩阵,A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,则|R(A)|=k+1.  相似文献   

11.
一类具有转向点超曲面的奇摄动椭圆型方程边值问题   总被引:7,自引:0,他引:7  
讨论了n维空间中如下一类具有转向点超曲面的奇摄动椭圆型方程的边值问题Lεu≡εLu ∑^ni=1fi(x1,……,xn)Эu/Эxi g(x1,……,xn)u=0,(x1,……,xn)∈Ω,u(x1,……,xn)│ЭΩ1=φ1(x1,……,xn-1),ai≤xi≤bi,u(x1,……,xn)│ЭΩ2=φ2(x1,……,xn-1),ai≤xi≤bi。其中:ε为一正参数,且L=∑ni,j=1aij(x1,……,xn)Э^2/ЭxiЭxj(aij=aji),∑ni,j=1aijξiξj≥λ∑ni=1ξ^2i,任意ξi∈R,i=1,2,……,n,λ>0。利用多重尺度法和比较定理、就形坐标和抛物柱函数,研究了该边值问题解的渐近性态。  相似文献   

12.
设F=X H:Kn→Kn为特征0的域k上的多项式映射,当F=(x1 h1,…,xn hn),hi(x)=xi (ai1x1 … ainxn)3,i=1,…,n时,称F为三次线性多项式映射.通过矩阵A=[aij:i,j=1,…,n]的幂零性质,研究了上述三次线性多项式的上三角化问题,证明在秩为3时A是强幂零的,而在秩为4时不是强幂零的,从而在秩为4时,多项式映射F并不总是可上三角化.为进一步了解强幂零性质,最后讨论了与强幂零性质有紧密联系的一些猜想和性质.  相似文献   

13.
设A∈Cn×n,B=A+E为其扰动矩阵,A、B的特征值分别为λ(A)={λk},λ(B)={μk}.关于特征值的传统误差界是估计|μ1-λ1|.利用矩阵的奇异值分解得到了可对称化矩阵特征值的wielandt型绝对扰动上界,改进了以往的结果.  相似文献   

14.
设S^1n(k)和S^2n(k)分别表示至少有一环的n阶本原有向图的第k个下重指数集和第k个上重指数集,对2≤k≤n-1,证得S^1n(k)={1,2…,n-k)},S^2n(k)={1,2,…,2n-k-1}。  相似文献   

15.
一类组合型三角插值多项式   总被引:5,自引:2,他引:3  
构造了一个以{θk=kπ/(n+1)}nk=1 为插值结点的f(θ)∈C2π且为奇函数的组合型三角插值多项式算子Sn(f;r, θ)(r为自然数). Sn(f;r,θ)对每个以2π为周期的奇连续函数都能在全实轴上一 致收敛到f(θ); 并且若f(θ)∈Cj2π(0≤j≤r-1)是奇的, 则Sn(f;r, θ)对其收敛阶均达到最佳收敛阶.  相似文献   

16.
Xn是包含n个元素的全序集,SPn-是Xn上的降序严格部分变换半群,对4 n和2≤r≤n-2,证明了半群SK-(n,r)={α∈SPn-∶|Imα|≤r}是幂等元生成的,并且是由顶端Jr*的(r+1)S(n,r+1)个幂等元生成.  相似文献   

17.
设SPCn是[n]上的降序且保序严格部分变换半群。对n≥5和3≤r≤n-2,证明了半群V(n,r)={α∈SPCn:|lim(α)|≤r}是幂等元生成的,且它的秩和幂等秩均为sum from n-1 to k=r((nk)(k-1 r-1))。  相似文献   

18.
一个含有n个不同正整数的集合S={xt,…,xn}称为是gcd闭的,如果S中任两个整数的最大公因子也在S中,洪绍方在2002年猜想:对于给定的一个正整数t,存在一个仅由t决定的正整数k(t),使得当n≤k(t)时,定义在任意gcd闲集S={xt,…,xn}上的幂LCM矩阵([xi,xj]^t)是非奇异的;而当n≥k(t) 1,则存在一个gcd闭集S={xt,…,xn},使得定义在其上的幂LCM矩阵([xi,xj]^t)奇异,洪于1999年证明了k (1)=7,在本文中,作者证明了若t≥2,则有k(t)≥8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号