首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
反平面剪切(Ⅲ型)加载下岩石断裂特征的有限元分析   总被引:1,自引:2,他引:1  
采用有限元方法分析了在反平面剪切(Ⅲ型)加栽下岩石裂纹尖端的应力场及其尺寸效应,探讨了岩石在Ⅲ型加栽下的起裂角与断裂机理,并与实验结果加以对比.结论表明,在Ⅲ型加栽条件下,岩石不一定产生沿原裂纹面裂纹扩展的Ⅲ型断裂.当试件的最大剪应力与最大拉应力之比τmcr/σ1小于其临界值之比τ1/σ2时,往往产生偏离原裂纹面方向而沿着最大拉应力方向的拉伸(Ⅰ型)断裂,断裂轨迹为一空问螺旋面.为实现Ⅲ型加栽下沿原裂纹面扩展的Ⅲ型断裂,建议采用S/L〉0.8和a/w〈0.2的反平面冲剪试件.  相似文献   

2.
复合型断裂是工程结构中较常遇到的一个实际问题。复合型断裂一般在下述条件下发生: 1.裂纹体受到复合应力作用:如图1所示,图中σ是拉应力,τ是剪应力,在σ和τ的复合应力作用下,裂纹沿最大拉应力|σ_θ|_max方向扩展。  相似文献   

3.
设F(z)=z+An+1z^n+1...,是单位圆内的一种Bazilevich函数。考察由组合式(f(z_/z)^a=(F(z)/z)^a+λz/(1-λ)[(F(z)/z^a]'定义的f(z)的性质,其中a>0,0<λ≤1/1+a证明了1/n√R0f仍然在F(z)所在的族中,其中R0<1是一个二次方程的正根。  相似文献   

4.
1420铝锂合金的疲劳裂纹扩展和自抑制   总被引:2,自引:0,他引:2  
研究了1420铝锂合金在2种不同应力比(0.1和0.7)下的疲劳长裂纹扩展特性和闭合效应,测量了裂纹扩展的门槛值和闭合力.虽然1420合金具有较低的本征门槛值,然而在低应力比下却呈现出优良的疲劳裂纹扩展特性,表现在低应力比下较高的疲劳门槛值和近门槛区裂纹扩展的自抑制.从实验的角度探讨了该合金“自抑制”现象产生的原因,指出这种作用主要来源于外韧化作用,包括分层韧化作用和晶体学扩展路径导致的高的裂纹闭合效应  相似文献   

5.
证明了如下结果:设f(z)和g(z)是非常数的整函数,ai(z)(i=1,2,3,4)是f(z)和g(z)的四个判别的公共小函数.如果f(z)和g(z)CM分担a1(z)、IM分担a2(z),a3(z),a4(z),且τ(a2)>0,则f(z)≡g(z)  相似文献   

6.
基于最大周向正应力理论 ,研究并给出了无水作用的复合型裂纹在不同应力状态下扩展的临界应力强度因子和扩展方向角。结果表明 ,①Ⅰ型裂纹将沿裂纹面延伸方向扩展而无分支裂纹 ,Ⅱ型裂纹沿与原裂纹面成 70 5°延伸方向扩展 ;②单轴拉伸应力状态下裂纹面有逐渐向垂直于荷载方向上扩展 ,而单轴压缩应力状态下裂纹面有逐渐平行于荷载方向上扩展 ;③双轴应力状态下 ,裂纹扩展方向不仅取决于原裂纹的倾角 ,而且与所受应力状态及σ3 σ1 有关。  相似文献   

7.
引入复合二项Kantorovich-Stieltjes算子(S_rv)(x)=S_(k,τ)(x)(τ>0,0≤x≤1),证明了当τ→+∞时,(S_τv)(x)在(0,1]上几乎处处收敛于v关于Lebegue测度的绝对连续部份的Radan-Nikodym导数f(x).同时也证明了PoissonK-S算子(S_τv)(x)=(τdv)在[a,b](0,+∞)上也有类似的结论.  相似文献   

8.
本文对三种不同性能的Al2O3陶瓷与淬火钢在无润滑条件下的摩擦磨损机理进行实验分析,发现摩擦付的摩擦系数几乎与陶瓷的力学性能无关,但陶瓷的磨损速率与陶瓷力学性能特别是断裂韧性之间存在一定的关系.在于摩擦条件下,由于粘着力作用,金属从对偶件转移到陶瓷表面,转移的金属膜厚度往往超过陶瓷峰元的高度,从而隔开了陶瓷与金属的直接接触,陶瓷的主要磨损机制是摩擦表面的裂纹源在疲劳应力作用下沿薄弱的晶界扩展,最终形成磨拉的脱落,造成陶瓷磨损.  相似文献   

9.
设D是一个边界Г∈C^1a(0〈a≤1)的有界单连域,复函数q(z)∈C^1a(D),│q(z)│≤1,等积只能在Г上成立,且在Г上等式q(z(t)z’(t)+1│z∈Г=0最多在有限个点上成立,本文给出以满足上述条件的复伸张q1(z)及(q2(z)∈C^1a(D)为系数的二维奇异积分方程w(z)+q1(z)/n√√w(t)/(x-z)^2dσ+q2(z)/n√√w(t)dσz/t-z=f(z)的  相似文献   

10.
本文对二维边渗流模型给出了临界状态时连接函数τPc(o,v)的幂估计,即存在常数a>0,C1>0,C2>0使得C1|v|^-1≤τpc(o,v)≤C2|V|^-a,这里o=(0,0),v=(v1,v2)∈Z^2,|v|=|v1|+|v2|.  相似文献   

11.
磁力研磨的试验研究   总被引:4,自引:0,他引:4  
本文介绍一种机械加工新工艺.利用永久磁铁及磁性磨料,对难加工材料不锈钢工件内表面进行研磨.用正交试验法试验了磨料粒度、工件转速、磁极间隙等参数对磁力研磨效果的影响.  相似文献   

12.
水平井钻井过程中,钻杆与技术套管的接触力较大,套管磨损比较严重,套管强度降低较多,给后续试油及完井投产作业留下隐患。为了深入了解水平井水基泥浆中钻杆-套管的磨损机理,为准确评价庆深气田套管磨损程度及剩余强度提供依据,在西安石油大学创新研制的环块式钻杆-套管磨损实验机上,模拟实际钻进参数,进行了该气田常用的水基泥浆中钻杆-套管磨损实验,考察了接触压力、转盘转速、磨损时间等因素对套管磨损效率的影响。利用试件磨损表面扫描电镜(SEM)图片进行了形貌分析,确定了水基泥浆中套管的磨损机理。实验结果表明:水基泥浆中,套管的磨损类型兼有粘着磨损、疲劳磨损和犁沟磨损等。黏着磨损是最主要的类型,采用基于黏着磨损机理的White磨损效率模型预测井下套管的磨损是可信的。水基泥浆中P110套管的磨损效率在(2~8)×10-131/Pa之间,稍大于钻井手册中的套管磨损效率(2×10-131/Pa);磨损效率随接触压力和转速的增加而增加,前期增长速率小,后期增长速率大;磨损效率随磨损时间的增加先增加,后逐渐减少,最后趋于稳定。  相似文献   

13.
基体组织对材料的性能有重要影响.本文以高锰钢、高碳低铬钢(GCr15)、球墨铸铁为试验材料,研究了不同热处理条件下获得的非平衡基体组织试样的碳化硅两体磨损特性.结果表明,在所试验的马氏体、马氏体十残余奥氏体、单相奥氏体以及贝氏体+马氏体+奥氏体复合基体中,以淬火马氏体最耐磨,贝氏体复合组织的耐磨性仅与高锰钢单相奥氏体相当.适当地增加残余奥氏体含量.即提高淬火温度可提高马氏体基体组织的耐磨性.  相似文献   

14.
本文通过砂带磨削摆线轮齿面的大量试验,讨论了砂带大曲率弯曲时磨削较高精度复杂曲面零件的表面粗糙度和残余应力;分析了工艺参数对磨削表面质量的影响规律,给出了相应的经验计算式,为提高砂带磨削表面质量及合理选择工艺参数提供了依据。  相似文献   

15.
研究了聚氨酯分别在含石英砂的清水、聚丙烯酰胺(PAM)溶液和氢氧化钠溶液三种介质条件下,磨粒侵蚀过程中所发生的表面物理效应和表面化学效应。利用扫描电子显微镜(SEM)、光电子能谱仪(XPS)和傅立叶表面红外仪(FT-IR-ATR)对聚氨酯在磨损前后的表面形貌、元素组成、结合能和官能团作了分析。发现聚氨酯磨粒侵蚀的物理效应是运动颗粒对材料表面的微切削、材料的高疲劳破坏以及塑性断裂,而表面化学效应主要有分子链断裂、热降解、水解和氧化降解。  相似文献   

16.
研究了铸造复合中锰奥氏体钢在冲击磨料磨损条件下的耐磨性能。结果表明:铸造复合中锰奥氏体钢的耐磨性是高锰钢的5.41倍。复合层中碳化物结构为(Cr,Fe)23C6和(Cr,Fe)7C3,呈网状分布,具有抑制磨粒压入基体和阻碍磨粒对基体的切削作用。亚表层中介稳奥氏体发生应变诱发马氏体相变,转变能来源于外界冲击功,其值为434J·mol-1。  相似文献   

17.
对近10年来国内外在磨粒侵蚀研究的进展作了综合介绍与评述,重点论述了液体介质的速度、介质中颗粒的浓度、颗粒尺寸以及其它因素对高分子材料和金属材料的磨粒侵蚀率的影响,在此基础上,讨论了磨损率的准理论方程。介绍了高子分材料、金属材料、复合材料和陶瓷以及水力旋流器锥套磨粒侵蚀的磨损机理,并提出了今后磨粒侵蚀研究中的几个值得重视的研究方向。  相似文献   

18.
本文设计了磨料射流系统及喷嘴结构,实验研究了磨料射流切割与破碎物料的性能,确定了磨料喷嘴出口的最佳长度,对清水和磨料溶液进行了射流冲击性能比较试验;并进一步在磨料射流中加入高分子聚合物添加剂,实验证明,高分子减阻剂同样对磨料射流性能有改善.  相似文献   

19.
固液两相射流清洗油管涂料的实验研究   总被引:1,自引:0,他引:1  
对前混合式磨料射流清洗油管进行了实验研究,研究结果表明,前混合式磨料射流清洗油管涂料的清洗速率随泵压和喷嘴直径的增大而增大,喷距、喷射角和颗粒直径的最佳值分别为150mm、120°(或60°)和0.8mm。油管旋转速度与喷嘴平移速度的比值与清洗宽度成反比。前混合式磨料射流清洗油管涂料的速率大大高于后混合式磨料射流。  相似文献   

20.
本文概述了金属切削加工中采用的复合技术,详细地介绍了在线电解修锐度削、超声振动切削、磨料水射流切割及电解电火花加工等复合技术的新进展,指出复合技术的应用前景与发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号