首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
利用初等方法给出了丢番图方程x4+py4=z2(2z,(x,y)=1,p为奇素数)当2(×)Q,p=2Q2+1时的全部正整数解,从而改进了Mordell、佟瑞洲关于x4+py4=z2的结果.  相似文献   

2.
方程x~2 y~2=2z~2 (1)的正整解为 i 当其正整解相等时,有x=y=z=t,其中t∈N={1,2,3,…}; ii 当其正整数解互不相等且同为奇数时,有x=m~2 2mn-n~2,y=|-m~2 2mn N~2|,z=m~2 n~2,其中m,n∈N,m>n,(m,n)=1,m、n为一奇一偶。证明 i 显然。今证ii。由方程 (1) 知,它的正整数解x,y,z同为奇数或同为偶数,否则方程 (1) 是不成立的。特x,y为奇数,z为偶数,令x=2p 1,y=2q 1,z=2u,其中p,q,u∈N。将x,y之值代入 (1) 并将其两边同除以2,则其左边等于2(p~2 q~2 p q) 1为奇数,而右边等于4u~2为偶数,引出矛盾,方程 (1) 不成立。故方程 (1) 不存在x,y为奇数而z为偶数的解。同理可证方程 (1) 不存在x,y为偶数而z为奇数,或x,y一奇一偶而z为奇数,或x,y一奇一偶而z为偶数的正整数解。所以方程 (1) 的互不相等的正整数解x,y,z同为奇数或同为偶数。而要求方程 (1) 的同为偶数的解x,y,z,这可将方程 (1) 的同为奇数的解x,y,z  相似文献   

3.
本文运用初等数论简单同余法、分解因子法及反证法等,得到丢番图方程2py2=2x3+3x2+x,(p为素数)无正整数解的情况.(1)当p≡1(mod 8),p≡5(mod 8),p≡7(mod 8)时,则方程无正整数解;(2)当p≡3(mod 8)时,Un+Vnp(1/2)=(x0+y0p(1/2))n.其中x0,y0是Pell方程x2-py2=1的基本解,当n≡0(mod 2)时,则方程无整数解;当n≡1(mod 2)时,若2|x0,则方程无整数解.特别是p≡3(mod 8)且p100时,2|x0,则方程无整数解.  相似文献   

4.
利用初等方法给出了丢番图方程x4-py4=z2,(x,y)=1,2|y当p=Q2+1,p为奇素数时的全部正整数解,从而拓展了Mordell关于x4-py4=z2的结果。  相似文献   

5.
本文在复域C内研究了二阶迭代微分方程x″(x[r](z))=(x[m](z))2,r,m≥2;r,m∈〖WTHZ〗N〖WTBZ〗解析解的存在性. 通过Schrder变换,即x(z)=y(α-1(z)),作者把这类方程转化为一种不含未知函数迭代的泛函微分方程α2y″(αr+1z)y′(αr z)=αy′(αr+1z)y″(αrz)+(y′(αrz))3(y(αm z))2,并给出它的局部可逆解析解.本文不仅讨论了双曲型情形|α|>1,0<|α|<1和共振的情形(α是一个单位根),而且还在Brjuno条  相似文献   

6.
设G是2m阶循环群,确定G的全形Hol G的自同构群:(i)当m=1时,Aut(Hol G)≌1;(ii)当m=2时,Aut(HolG)≌Hol G=D8;(iii)当m≥3时,Hol G的内自同构群Inn(HolG)=〈x,y,z|x2=y2m-2=z2m-1=1,[x,y]=1,zx=z-1,zy=z3〉,且Aut(HolG)/Inn(HolG)≌Z2×Z2.  相似文献   

7.
设n是正奇数,Un=(αn+βn)/2.yn=(αn-βn)/2√2,其中α=1+√2,β=1-√2.运用Pell数的算术性质讨论了方程x2+Uyn=Vzn的正整数解(x,y,z).证明了当n≡±3(rood 8)时,该方程仅有正整数解(x.y,z)=(V2n-1.2,4).  相似文献   

8.
设p_1,p_2,…,p_s(1≤s≤4)是互异的奇素数,利用递归数列、Pell方程解的性质证明了当D=2p_1p_2…ps(1≤s≤4)时,不定方程组x~2-14y~2=1与y~2-Dz~2=16的整数解如下:当D=2×449时,方程组仅有解(x,y,z)=(±13 455,±3 596,±120)以及解(x,y,z)=(±15,±4,0);当D≠2×449时,方程组仅有解(x,y,z)=(±15,±4,0).  相似文献   

9.
本文研究了下列三阶Fuchs型方程: U_(xyz)+a/(x+y+z)U_(yz)+a/(x+y+z)U_(2x)+c/(x+y+z)U_(xy)+d/(x+y+z)~2U_x +e/(x+y+z)~2-U_y+f(x+y+z)~2U_z+g/(x+y+z)~3U=0 (1)(其中a,b,c……,g均为常数) 的奇柯西问题、奇第三问题及奇第四问题。当方程(1)的系数满足一定关系时,证明这些问题是适定的,并给出了解的表达式。当(1)的系数不满足上述关系时,我们对一个较简单的方程(33),通过Riemann公式建立了其柯西问题解的表达式。  相似文献   

10.
关于丢番图方程px4-(p-1)y2=z4   总被引:3,自引:1,他引:2  
利用初等方法给出了丢番图方程px4-(p-1)y2=z4当p-1=Q2时的全部正整数解,从而推广了张跃辉关于3x4-2y2=z4的结果.  相似文献   

11.
利用递归序列的方法及Pell方程解的性质证明了不定方程组x~2-26y~2=1与y2-Dz2=100的解的情况如下:ⅰ)当D=2p1…ps,1≤s≤4时,其中p1,…,ps(1≤s≤4)是互异的奇素数。除开D=2×7×743,方程组有非平凡解(x,y,z)=(±530 451,±104 030,±1 020)这一基本情况之外,仅有平凡解(x,y,z)=(±51,±10,0)。ⅱ)当D=2~n(n∈Z+)时,方程组只有平凡解(x,y,z)=(±51,±10,0)。  相似文献   

12.
设a,b,c为两两互素的正整数且满足a2+b2=c2.1956年,Je?manowicz猜测丢番图方程(na)x+(nb)y=(nc)z仅有正整数解x=y=z=2.此利用初等方法证明了:对于任意的正整数n,除去x=y=z=2外,丢番图方程(56n)x+(33n)y=(65n)z,(80n)x+(39n)y=(89n)z和(20n)x+(99n)y=(101n)z无其他的正整数解,即当(a,b,c)=(56,33,65),(80,39,89)和(20,99,101)时,Je?manowicz猜想成立.  相似文献   

13.
当丢番图方程ax2 by2 cz2 =dw2 有整数解x0 ,y0 ,z0 ,w0 (w0 ≠ 1) ,(x0 ,y0 ,z0 ,w0 ) =1时 ,给出了它满足 (x ,y ,z,w) =1的全部整数解的公式 :x =(an2 bm2 cp2 )x0 - 2n(anx0 bmy0 cpz0 )t , y =(an2 bm2 cp2 )y0 - 2m(anx0 bmy0 cpz0 )t ,z =(an2 bm2 cp2 )z0 - 2p(anx0 bmy0 cpz0 )t , w =(an2 bm2 cp2 )w0t .  相似文献   

14.
证明了对任意的整数a,b,方程z~2=(x(x+1)(x+2))~2+(y(y+a)(y+b))~2有无穷多整数解(x,y,z).特别的,当a为偶数以及b=a+2,a+4时,该方程有无穷多组满足x■y的整数解.  相似文献   

15.
设a,b,C是两两互素的正整数,min(a,b,C)>1.论文证明了:当b(?)1(mod 8),c(?)5(mod 8)且c是素数方幂时,如果ax by=cz有正整数解(x,y,z)=(2,2,r),其中r是大于1的奇数,则该方程的例外解(x,y,z)都满足x=2以及y(?)z(?)1(mod 2).  相似文献   

16.
设a,b,c,l是适合a+b2l-1=c2,2|/bc,c≡-1(mod b2l)的正整数.运用初等数论方法讨论了方程ax+by=cz的正整数解(x,y,z),证明了当b≡5或11(mod 24)时,该方程仅有正整数解(x,y,z)=(1,2l-1,2).  相似文献   

17.
对大于2的正整数 x,给出了:求满足方程 x~2+y~2=z~2的正整数解(y,z)的一个公式;由 x 所确定的正整数解(y,z)的个数;满足(x,y,z)=1的正整数解的充要条件.  相似文献   

18.
该文证明了:1) 若p1,…,ps是不同的奇素数,则当D=p1…ps(1≤s≤3)时除开D为11,11×89×109,11×97×4801外,方程组G:x2-6y2=1与y2-Dz2=4仅有平凡解(x,y,z)=(±5,±2,0);2)若D是无平方因子正整数,则当D为偶数且D没有适合p≡1(mod 24)以及p≡7(mod 24)的素因数p,则方程组G仅有平凡解(x,y,z)=(±5,±2,0).  相似文献   

19.
关于丢番图方程px~4-(p-1)y~2=z~4   总被引:3,自引:0,他引:3  
利用初等方法给出了丢番图方程px4-(p-1)y2=z4当p=qQ2+1,2|Q,q≡3(mod4),p、q为奇素数时的全部正整数解,从而拓展了王洪昌和王春光的px4-(p-1)y2=z4的结果.  相似文献   

20.
用区间值模糊集的方法和原理,通过引入可表示的区间值重叠函数和分组函数的概念,在边界条件下给出以下4种方程及类似方程的解:I(x,O_1(y,z))=O_2(I(x,y),I(x,z));I(O_(x,y),z)=G(I(x,z),I(y,z));I(G(x,y),z)=O_(I(x,z),I(y,z));I(x,G1(y,z))=G2(I(x,y),I(x,z)).并说明t-可表示的连续Archimedean三角模(三角余模)分配性方程的解类似于上述结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号