首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
结合齿轮啮合原理,推导出塑料斜齿轮与钢制蜗杆传动副的啮合方程式.基于MSC.Patran/Nastran建立塑料斜齿轮和钢制蜗杆传动的本体温度场,并对啮合传动副进行有限元结构分析,得到此传动机构热平衡过程中载荷、本体温度和环境温度之间的内在联系.并通过赫兹接触理论验证了有限元分析的正确性.结果表明:在该传动过程中,热源从啮合齿面逐渐扩散到轮齿端面和非工作齿面上,热平衡时啮合齿面上轮齿中部靠近分度圆处温度最高,而轮齿端部温度最低.  相似文献   

2.
为了更准确地计算出主动轮的齿根弯曲疲劳应力,考虑了齿面间的摩擦力。以主动轮处于齿顶啮合位置时的轮齿为研究对象,分析了齿面摩擦力对齿根弯曲疲劳应力的影响,并提出一个被称为摩擦力影响因子的影响系数。研究结果表明,摩擦力的影响幅度与摩擦系数f及齿轮的齿数大小相关;当f=0.1时,摩擦力可使齿根弯曲疲劳应力增加8.4%;而当f≥0.15时,则可以高达10%以上。研究结果表明了在齿轮传动设计中,两轮齿齿面间的摩擦力不可忽略。  相似文献   

3.
为快速求解面齿轮传动的全齿面闪温分布,基于Blok闪温公式、齿面接触分析和承载接触分析技术,通过计算接触椭圆长轴离散点处的切向速度、综合曲率半径、载荷密度以及赫兹接触带半宽,建立了面齿轮传动全齿面闪温求解模型,并与带精英策略的快速非支配排序遗传算法相结合,以小轮修形曲线的8个参数为优化变量,以全齿面闪温最小为优化目标,建立了面齿轮传动抗胶合修形优化模型。算例分析结果表明:节线附近闪温近似为0℃;离节线越远,相对滑动速度就越大,闪温也越大,胶合失效最易发生在啮出的接触椭圆长轴上;优化小轮修形参数使全齿面的最大闪温下降了29.9%,从而提高了面齿轮传动的抗胶合能力。  相似文献   

4.
斜齿轮滑动摩擦功率损失的计算   总被引:3,自引:1,他引:2  
应用齿轮啮合理论,提出了斜齿轮啮合滑动摩擦功损的计算方法.首先,利用轮齿接触分析得到齿轮副的啮合路径和接触印痕:然后,利用承载接触分析求得齿面接触点法向载荷和承载传动误差,通过求解一个周期内所有啮合位置,可以得到一对轮齿从进入啮合到退出啮合所有接触点的法向载荷和承载传动误差,极大减少了计算工作量;最后,将承载传动误差转换成齿面接触点的相对滑动速度并与该接触点处的摩擦力相乘得到该点的滑动摩擦功损,将所有接触点的滑动摩擦功损一起带入功率近似计算公式从而得到斜齿轮啮合的滑动摩擦功率损失.  相似文献   

5.
斜齿轮因具有传动平稳和承载能力高等优点而被广泛用于高速、重载传动中。目前对于斜齿轮的设计多以满足齿面接触强度、轮齿弯曲强度和齿面抗胶合承载能力为准则,未考虑设计参数对啮合效率的影响,易造成能源浪费和经济损失。在影响齿轮啮合效率的因素中,滑动摩擦功率损失占主要地位。因此,本文从计算斜齿轮滑动摩擦功率损失入手,通过计算啮合点处的滑动摩擦功率损失并沿啮合线积分,得到斜齿轮啮合效率的表达式,从中揭示出设计参数对啮合效率的影响规律,进而提出在满足齿面接触强度、轮齿弯曲强度和齿面抗胶合承载能力的前提下斜齿轮设计参数的选择原则。  相似文献   

6.
面齿轮轮齿刚度是面齿轮传动啮合刚度的基本组成,其计算方法的解决可为面齿轮啮合刚度以及后续动力学分析奠定必要的理论基础。基于Buckingham的观点,将面齿轮齿形看作是由沿齿长方向一系列变压力角的齿条组成,得到沿轴向和径向都为变截面的面齿轮简化齿形,获得了面齿轮轮齿啮合变形的计算公式,求解出了面齿轮轮齿刚度;并通过与有限元法进行对比分析,验证了面齿轮轮齿刚度计算方法的可行性;分析了面齿轮模数、压力角以及齿宽对其轮齿刚度的影响。结果表明:面齿轮模数越大,其轮齿刚度沿齿根到齿顶的变化率越小;面齿轮压力角越大,其轮齿刚度越大,但沿齿根到齿顶的变化率基本不变;面齿轮齿宽越大,其轮齿刚度越大,且沿齿根到齿顶的变化率较之压力角的影响大。  相似文献   

7.
本文利用有限元软件ANSYS对矿井提升机的传动齿轮做了弯曲强度分析,校核了齿轮的弯曲强度,并由结果可以判断出齿轮在外载荷的作用下,其变形越接近齿顶,变形越大,齿顶部分变形最大,齿轮本体变形很小,整个轮齿的变形对传动的影响不大。轮齿的应力集中主要发生在齿根圆角处,齿轮啮合过程中此处最易折断。齿轮受载后发生表面和整体的变形,会影响齿间载荷分配和动态性能。  相似文献   

8.
考虑齿轮时变啮合刚度、传动误差和齿面摩擦力,研究运用键合图理论建立齿轮传动非线性振动键合图模型。建立用容性元件c表示的载荷和轮齿弹性变形的键合图模型,给出用时变啮合刚度表示的容度参数Kj;提出在齿轮传动动力学建模中用流源Sf表示传动误差,并给出建模方法;考虑相对运动速度与摩擦力方向的关系,建立齿面摩擦力键合图模型。根据因果关系和功率流,得到齿轮传动非线性键合图模型的状态空间方程。结果表明键合图建模理论与方法可以用于解决齿轮非线性动力学的建模问题,研究工作是系统动力学建模研究的基础性工作。  相似文献   

9.
面齿轮啮合过程中齿面接触分析   总被引:4,自引:0,他引:4  
根据面齿轮啮合原理,研究面齿轮啮合过程中的齿面接触特性;运用MATLAB软件编制相应的程序仿真出齿数差⊿ =1~3的圆柱齿轮与面齿轮啮合时面齿轮齿面的接触轨迹、接触区域面积及形状,并通过面齿轮齿面接触检测实验验证其正确性.研究结果表明:圆柱齿轮的齿数差对面齿轮传动的齿面接触区域的面积和位置影响不大,而传动比对齿面接触区域的位置影响较大,传动比越大,齿面接触区域越靠近面齿轮轮齿的中部,越有利于提高面齿轮传动的性能.同时实验表明齿面接触面积和形状受制造精度影响,精度越高,齿面接触区域面积和形状越稳定,传动质量越高.因此,大的传动比和高的制造精度对提高面齿轮的传动性能是有益的.  相似文献   

10.
基于人字齿轮啮合特性的滑动摩擦功率损失   总被引:2,自引:0,他引:2  
以空间多重共轭啮合理论为基础,利用人字齿轮副轮齿接触特性与承载接触特性,提出一种计算人字齿轮滑动摩擦功率损失的方法。首先,利用人字齿轮副轮齿接触分析(TCA),获得人字齿轮齿面接触路径和印痕。然后,利用人字齿轮副承载接触分析(LTCA),计算得到啮合齿面瞬时椭圆长轴(接触点)上离散点的法向载荷和瞬时接触点的传动误差,把所得到的离散点载荷和传动误差分别转换成齿面瞬时接触点的法向载荷和相对滑动速度,二者与摩擦因数相乘得到人字齿轮瞬时接触点的滑动摩擦功率损失。最后,对人字齿轮齿面所有瞬时接触点的滑动摩擦功率损失进行拟合并积分,最终获得1对人字齿轮轮齿从啮入到啮出的滑动摩擦功损。  相似文献   

11.
齿向修形可以显著改善载荷沿齿宽方向分布不均的现象,从而提高齿轮的传动精度.文章在已有研究的基础上提出在珩轮轴向运动过程中不断调整珩轮的附加径向运动量,通过多轴联动的方式对齿轮进行齿向修形加工.首先建立内齿珩轮齿面数学模型求解珩轮齿面方程;根据修形量与附加径向运动量的关系得到修形过程中的附加径向运动量;再根据珩齿修形加工...  相似文献   

12.
以三圆弧谐波齿轮为研究对象,结合改进运动学法和数值离散思想方法,求解出谐波齿轮柔轮齿廓方程和谐波齿轮传动的啮合不变矩阵,进而求解柔轮共轭齿廓;在共轭齿廓基础上,采用圆弧拟合和几何计算相结合的方法,设计求解出刚轮齿廓,并分析柔轮齿廓参数对柔轮共轭齿廓的影响。为进一步提高谐波齿轮的传动精度、传动平稳性、啮合刚度和承载能力,以增大谐波齿轮传动双共轭区间为目标,建立优化函数,对柔轮齿廓参数进行单变量和多变量优化分析。研究结果表明:采用合理的齿廓参数,可增加刚轮齿廓所包含的柔轮的理论共轭啮合点,最大化谐波齿轮传动双共轭区间,提高谐波齿轮啮合传动特性。  相似文献   

13.
结合渐开线斜齿轮和少齿数齿轮设计理论,对少齿数齿轮副各参数进行选取,建立少齿数齿轮副的三维模型,进行少齿数齿轮副的接触有限元分析,得到了少齿数齿轮副传动过程中接触区域和轮齿接触应力。通过对比两种齿面接触强度计算方法,初步验证了以下界点作为齿面接触强度计算点的合理性,为少齿数齿轮副的优化设计和齿面接触强度公式的建立提供参考依据。  相似文献   

14.
根据齿轮传动中轮齿折断和齿面点烛疲劳破坏现象,基于齿轮啮合原理,对斜齿轮啮合过程的力学性能及疲劳寿命预测进行研究,结合实例分析计算齿轮传动过程中齿面接触应力变化规律和齿根弯曲应力变化规律;利用ANSYS建立斜齿轮副有限元模型,分析齿面接触应力和齿根弯曲应力,将其与理论计算结果比较,验证有限元分析方法的正确性;利用FE-SAFE中的名义应力分析法对斜齿轮副的危险部位进行疲劳寿命预测.  相似文献   

15.
蜗轮稳态温度场的模拟及影响因素分析   总被引:1,自引:0,他引:1  
为了获得蜗轮齿面本体温度的分布特征,结合传热学、摩擦学及啮合原理,对啮合过程中轮齿的对流换热系数和齿面摩擦热流密度进行了数值模拟,建立了轮齿温度场的有限元分析模型,并对不同载荷和转速条件下,轮齿接触面本体温度的变化趋势进行了研究.结果表明:齿面本体温度沿齿宽方向的分布是不对称的,蜗轮齿面的啮入端、中间区、啮出端按低温、高温、中温分布;最大本体温度产生于轮齿齿面的节线附近;蜗轮副传递的转矩越大,齿面最大本体温度随转速增加的变化趋势越明显.  相似文献   

16.
为了提高汽车驱动桥综合传动性能,提出基于ease-off拓扑修形准双曲面齿轮齿面多目标优化设计方法。预置传动误差参数及抛物线修形参数设计小轮法向ease-off曲面,小轮修形齿面表示为大轮的共轭齿面叠加ease-off曲面。结合齿面接触分析(TCA)、齿面承载接触分析(LTCA)方法及齿轮摩擦理论最新进展,得到接触线离散点的滑动速度、啮合承载变形、载荷分布及局部摩擦系数,进而确定齿面瞬时啮合效率和Block闪温。以承载传动误差幅值(ALTE)最小、齿面闪温最小和平均啮合效率最大进行多目标优化,获得最佳修形齿面,并分析齿面滑动速度与综合曲率半径的变化及重合度对啮合性能的影响。算例表明:最优ease-off修形齿面在啮入、啮出端有足够的抛物线传动误差,可有效减小ALTE并降低安装误差的敏感性;在整个齿高方向有一定的齿廓修形且接触迹线角较小时,齿轮副则有较大重合度,且齿顶、齿根载荷向节线附近集中,而节线附近的滑动速度较小,导致接触线平均摩擦系数下降,因此,啮合效率增加,齿面闪温下降;齿面适配量过大时,接触线载荷增加,摩擦功耗增大,啮合效率减小。  相似文献   

17.
以平行轴变齿厚斜齿轮传动为研究对象,根据齿轮啮合原理及小、大齿轮的齿面方程,分别建立其标准安装以及存在中心距安装误差、轴线安装误差和综合安装误差时轮齿接触的数学模型,通过Matlab编程进行求解,得到不同安装情况下轮齿的接触轨迹及传动误差并进行了对比分析。结果表明,该齿轮传动对轴线安装误差较敏感,形成了边缘接触并且引起周期性的传动误差 为该齿轮传动的设计与分析奠定了基础。  相似文献   

18.
椭圆锥齿轮的强度计算与分析   总被引:1,自引:1,他引:0  
由于目前对椭圆锥齿轮的研究主要是进行传动原理及特性、齿形设计、加工制造分析以及传动实验等研究,而对其轮齿承载能力的研究相对较少.结合微分几何理论和齿轮啮合原理,在椭圆锥齿轮平面当量节曲线的基础上,获得传动过程中的压力角变化关系.对啮合过程进行受力分析,并推导轮齿所受切向力及法向力的计算公式.建立椭圆锥齿轮强度的连续计算方法,讨论齿面接触应力和齿根弯曲应力随主动轮转角的变化规律.判断啮合过程中最薄弱轮齿的位置,分析了模数、齿数和偏心率3个基本参数对接触应力及弯曲应力的影响,并通过与传统直齿锥齿轮强度计算法的对比分析,验证了椭圆锥齿轮强度连续计算法的正确性.  相似文献   

19.
齿轮传动中的齿面失效与其润滑状态有密切关系。如果两轮齿表面存在油膜,那么就可以避免表面的直接接触,减轻摩擦磨损,提高表面强度,从而使齿轮传动的承载能力和寿命得到提高。因此,两轮齿表面间的油膜厚度可以做为齿轮传动中齿面强度的一个重要判据。由于齿轮传动中齿面滑动速度的大小和方向都在不断变化,以及传动中工作情况的不同,使得轮齿表面间的油膜厚度的计算复杂化,特别是齿面间的润滑状态直接影响油膜厚度。根据弹性流体动力润滑(EHL)理论,线接触的润滑受两个重要物理效应影响,一是外载下表面的弹性变形,即弹性效应;二是润滑油的…  相似文献   

20.
本文提出从直齿圆柱齿轮的轮齿端面开轴向通孔——中空齿,以降低轮齿刚度及改善轮齿散热条件,从而提高齿轮传动的承载能力,采用有限元法对轮齿进行刚度和应力计算并用国家标准(CB3481—83)的齿轮计算方法计算得出,这种轮齿齿面的计算接触应力较之一般轮齿约低7%,齿根的计算弯曲应力约低11%;并能有效地减轻振动和噪声。本文还给出了非变位轮齿上通孔以直径为0.6倍模数和距齿顶1.4倍模数较适宜的计算结果。这种措施对于模数较大的直齿圆柱齿轮传动有实际意义,在相同运转条件下工作时,齿轮的寿命可增加一倍以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号