首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
介绍了以AT90S8535为控制芯片的电炉炉温控制系统的设计.该控制器由AT90S853单片机、键盘/显示、热电偶、温度变送器、可控硅触发电路等组成.控制器采用了PID控制算法.由AT90S8535单片机构成的炉温控制器具有高效、控制精度高、外围电路简单、可靠性好、成本低等优点,因此它具有很好的市场推行价值.  相似文献   

2.
针对工业电阻炉炉炉温系统存在的滞后大,非线性时变的特点,采取将模糊控制和PID控制的方法,利用Matlab软件中SIMULINK这个软件来搭建传统PID温度控制系统与自整定模糊PID温度控制系统的模型,并对它们进行仿真分析,从仿真结果可知模糊PID控制系统相比传统PID控制系统,控制速度要快,稳定性要高.  相似文献   

3.
电阻炉温度控制系统的设计与实现   总被引:1,自引:0,他引:1  
设计和实现了一种采用工控机与温度模块、PWM输出卡、固态继电器及相关控制电路搭建的计算机电阻炉温度控制系统。该系统以PWM方式对执行器件(固态继电器)进行调节,实现了对电阻炉温度的精确控制。根据电阻炉升温单向性、大惯性、纯滞后的特点,改进了PID控制算法,采用分段PID结合积分分离或积分削弱算法的控制方案,实现了对电阻炉温度的大范围的连续调节,满足了复杂热处理工艺对温度的控制精度和控制规律的需要。  相似文献   

4.
针对常规温度PID控制系统由于温度惯性大、单向升温和滞后大等特性存在超调量较大、抗干扰性差等问题,提出一种新的电阻炉温度控制系统.该系统采用自适应模糊PID控制算法,在此基础上结合Smith预估补偿器,实现软切换,并采用MATLAB软件进行仿真.仿真结果表明,基于Smith预估补偿器的自适应模糊PID控制相比常规PID控制具有良好的控制性能.  相似文献   

5.
建立了炉温控制系统的数学模型,将自适应模糊PID控制器应用于炉温控制系统中.仿真实验表明:自适应模糊PID控制具有动态响应快,稳态性能好和鲁棒性强等优点.  相似文献   

6.
基于ARM的智能温控系统设计   总被引:2,自引:0,他引:2  
针对电阻炉温度控制纯滞后、大惯性环节控制的特点,传统的PID控制可以获得较好的稳态响应特性,但控制上会造成较大的系统超调,无法满足控制精度.应用参考模型自适应方法设计控制器,分析并给出了系统的数学模型,用超稳定理论设计了参考模犁自适应PID控制系统,并给出白适应率.以ARM单片机为核心,设计并分析了电阻炉智能温度控制系统硬件电路,由K型热电偶和数字转换芯片MAX6675组成温度检测电路,采用固态继电器来作为温控元件,利用开关特性来控制电路的断开和接通炉温控制主电路.实验结果表明该控制系统超调量小,跟踪速度快,可靠性高,结构紧凑、工作稳定.  相似文献   

7.
本系统以AT89C51单片机为核心,采用热电偶冷端补偿测温电路和固态继电器控温电路,实现了对电炉温度的自动控制。本文阐述了炉温控制系统的工作原理、硬件电路设计和软件设计以及控制规律的选择等,系统采用PID调节规律,在SIMULINK里建立系统模型进行仿真,通过调节比例P、积分I和微分D三个参数,最终得到了比较理想的控制效果。  相似文献   

8.
应用模糊神经网络PID控制技术,建立了高分子聚合物反应温度控制系统.该系统利用模糊神经网络调整PID参数,进一步完善了PID控制的自适应性能.自行设计了该控制系统的硬件和软件部分,可以接入8点热电阻信号,具有显示温度、自动控温、声光报警等功能,应用结果说明,该温度控制系统充分利用了模糊神经网络和PID控制的优点,具有良好的动、静态特性和自适应性.  相似文献   

9.
介绍以STD工业控制机为基础设计的真空炉温度控制系统,对控制量的调节采用了模糊控制规律;系统在运行中因故中断后可重新启动,重新启动后可自动找到现时炉内温度,并以此温度开始按原温度曲线继续往下执行;系统还可显示和打印给定温度、实际温度、运行曲线、实时钟等。  相似文献   

10.
应用模糊神经网络PID控制技术,建立了高分子聚合物反应温度控制系统.该系统利用模糊神经网络调整PID参数,进一步完善了PID控制的自适应性能.自行设计了该控制系统的硬件和软件部分,可以接入8点热电阻信号,具有显示温度、自动控温、声光报警等功能,应用结果说明,该温度控制系统充分利用了模糊神经网络和PID控制的优点,具有良好的动、静态特性和自适应性.  相似文献   

11.
加热炉待轧时炉温模糊决策   总被引:1,自引:0,他引:1  
基于对加热炉动态过程受控特征分析,将数学模型方法、模糊控制理论和模糊优化方法应用于加热炉动态过程炉温优化及控制研究.建立了加热炉待轧时炉温模糊优化模型,构造了以钢坯导热机理模型为基础的炉温在线模糊控制决策系统.在此基础上对典型待轧过程进行了炉温控制决策的计算机数值仿真.结果表明,炉温模糊决策结果使在炉钢坯获得了满意的控制效果.本文的模型方法可以有效地应用于加热炉控制系统.  相似文献   

12.
针对多数电加热炉必须要现场操作的背景下,提出了远程可监控的电加热炉模型。在原有电加热炉基础上添加了嵌入式控制器,移植了嵌入式系统UC/OS-II和以太网协议栈lwip建立服务器的网络功能,使用模糊控制算法设计了温度控制器,最终实现了电加热炉的远程监测与控制。实验表明系统的运行正常,控制算法合理,达到了预期的效果。  相似文献   

13.
针对工业炉温度系统存在的混沌现象,借助模糊控制技术,克服了用传统PID难于控制的炉温混沌现象;系统的仿真与实际运行效果表明:模糊控制是克服混沌现象的一种有效方法。  相似文献   

14.
钢铁冶炼中的温度是一个时变性、非线性的控制对象,很难对其构建准确的模型,采用数学模型技术在很大程度上无法得到准确的控制结果。为此,提出一种新的钢铁冶炼中的DCS波动温度稳定控制技术,给出钢铁冶炼炉DCS控制系统结构,介绍了钢铁冶炼中的DCS波动温度稳定控制原理,在PC机设定炉内最高温度后,下位机依据设定温度值令温度上升,通过模糊上升原理进行升温控制,达到设定温度值后,执行单神经元PID控制。将炉内温度偏差作为输入,将热电偶温度作为输出,通过单神经元PID技术进行DCS波动温度稳定控制。实验结果表明,所提方法稳定性和控制精度高。  相似文献   

15.
200 MW四角切向燃烧煤粉炉炉内过程的数值模拟   总被引:34,自引:0,他引:34  
借助FLUENT CFD软件平台,应用Eulerian/Lagrangian方法,在3种不同工况下,对200MW四角切向燃烧煤粉锅炉炉内的流动、传热及燃烧进行了数值模拟。为减小数值伪扩散的影响,采用了改进网格系统的措施。模拟结果表明:炉内最高温度出现天燃烧器区域,随着炉膛高度的增加,温度逐渐降低;整个炉膛空间存在旋转流场,从下至上旋转强度从弱到强,然后再逐渐减弱,直到炉膛出口仍存在残余旋流;炉内CO、O2和CO2的质量浓度分布与温度分布有很大关系,高温区对应着高的CO质量浓度和低的O2、CO2质量浓度。数值模拟结果为锅炉的运行和改造提供了参考依据。  相似文献   

16.
硅钢工业退火炉温度控制具有强耦合、纯滞后、多扰动等特点,它的控制方法代表着一类非线性系统控制的解决方法。以硅钢工业退火炉温度为控制对象,在双交叉限幅控制的基础上引入了智能学习系统,形成了基于智能学习系统的双交叉限幅控制方法来解决此类非线性系统的控制问题,并通过模块化的编程来实现其功能。结果表明:与传统的PID控制相比,该控制方法的控制精度、抗扰性等控制指标有明显提高,是解决此类非线性控制的一种有效方法。  相似文献   

17.
克服加热炉温度惯性的控制方法   总被引:2,自引:0,他引:2  
克服加热炉炉温的惯性是炉温控制系统的难点,本文介绍了在加热炉温度控制系统中采用分时周期采样与P.I.D输出限幅的方法克服加热炉炉温热惯性。  相似文献   

18.
真空退火炉退火温度的精确控制是一个典型的非线性、大时滞、大惯性、存在强交叉耦合、时变的复杂的控制问题,常规的PID控制器很难实现对退火温度的精确控制.本文以神经网络建立的真空退火炉模型为控制模型,利用自适应免疫遗传算法全局搜索获取最优的可变PID参数的方法,解决了真空退火炉退火温度精确控制的问题;应用结果表明,该温度控制系统优于传统的PID控制系统,并具有良好的可靠性、自适应性和鲁棒性.  相似文献   

19.
基于以太网的PID神经网络控制系统   总被引:3,自引:3,他引:0  
介绍基于以太网的PID神经网络控制系统的构建及实时控制过程.该系统具有易于实现、成本低、兼容性好等特点,有利于对分布式设备进行实时控制.控制结果表明.该系统对于大滞后、非线性对象取得较好的控制效果.  相似文献   

20.
本文包括:(1)炉膛内钢坯加热数学模型;(2)最佳炉温及最低燃耗在线模型。 采用一维模型,应用Hottel多层无限大气层间的辐射热交换计算方法,把各火焰射流的作用,当量地看作是夹在上下炉气层之间的一个火焰层。它的平均温度t_f可以根据Ricou-Spalding射流吸入经验公式,计算火焰和周围炉气间的质量交换,再按热平衡方程把t_f计算出来。钢坯内部传热按一维导热问题,用差分求解。 还建立了一个较简单的炉膛传热仿真模型,据此求出各炉段单位炉温对出钢平均温度及中心温度的变化率θ_m/Ti及θ_s/Ti。还可确定最小燃耗函数P的各炉段加权系数W_i。 令各段在线炉温调节量ΔTi=(T_(i,max)—T_(i,o))—ΔT_i′,这就能在线性规划中用ΔT_i′代替ΔTi作为未知量以满足非负条件。这时目标函数P_(min)=-sum (W_iT_i′)。文中还附有一个说明各段炉温按上述线性规划进行最佳控制的例题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号