首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以西北地区某水利工程地下洞室工程为例,采用弹塑性二维有限元法对低地应力区地下洞室围岩开挖后围岩应力进行了数值模拟研究,模拟出了低地应力区地下洞室围岩开挖后围岩应力值及其分布规律.结果表明,低地应力区地下洞室开挖后洞室围岩形成应力集中现象,侧壁位置处产生的压应力值大于洞顶位置压应力值,且洞顶产生拉应力.该研究成果将有助于进一步研究低地应力区地下洞室围岩变形破坏机理及其稳定性,对保障地下洞室工程的圆满进行具有重要的理论价值和现实意义.  相似文献   

2.
以西北某市水利地下工程泄洪洞为例,在采用弹塑性二维有限元法对洞室围岩开挖后Ⅳ类围岩变形量进行数值模拟研究的基础上,总结分析了低地应力区地下洞室开挖后围岩变形破坏及其特征。  相似文献   

3.
地下洞室形状优化设计   总被引:1,自引:0,他引:1  
洞室开挖会使围岩周边产生应力集中,产生拉应力与压应力。围岩出现拉应力对洞室稳定十分不利。通常通过改变洞室形状和轴比来消除围岩中的拉应力。本文提出一种使洞室拉应力σθ=0,而压应力最小的确定洞室最优几何形状的方法。  相似文献   

4.
以某水电站大型地下洞室群开挖为例,建立了三维数值分析模型,研究了洞室群开挖后洞周围岩的变形特性并分析了锚索应力损失对周围岩体变形和应力状态的影响;通过模拟结果与实测结果进行对比,分析模拟方法的合理性和支护方案的可行性.结果表明,围岩水平位移在洞室边墙中部最大,竖向位移在洞室拱顶最大,在洞室交叉部变形也较为显著;模拟结果与实测结果较接近,能良好地反映洞室实际开挖的过程和围岩的变形规律;锚索预应力损失达到某一程度时会使围岩水平位移显著增大.  相似文献   

5.
高地应力区地下洞室围岩稳定和变形分析   总被引:1,自引:0,他引:1  
本文分析总结了已有的地应力研究成果。考虑到高地应力与岩体特性的关系,对岩体采用四参数弹塑性开裂模型,提出了一种高地应力区地下洞室围岩稳定和变形的分析方法。用各种不同初始应力场(大小、方向、主应力比等)对直墙拱顶洞室围岩的稳定和变形状况作了分析比较,得出了一些有规律的成果。  相似文献   

6.
采用FLAC3D软件模拟分层拟作法和多层耦合工法,开挖某特殊用途大型地下洞室全过程,分析开挖引起的围岩变形、应力和塑性区分布状况.发现多层耦合法可以减小塑性区分布范围,开挖各工况围岩稳定性良好,可作为大型地下洞室安全施工的一种工法.通过模拟多层耦合法在Ⅲ、Ⅳ级围岩和不同地应力条件下的施工效果,研究该工法的地质条件适用性.相对而言,围岩质量是更敏感的影响因素,对围岩稳定性影响更大;构造应力场条件下围岩变形和塑性区显著增大.  相似文献   

7.
锦屏一级水电站地下厂房洞室群开挖规模巨大,赋存于极高至高地应力和低强度岩体环境下,且受f13、f14、f18断层切割,其围岩稳定性将成为影响工程安全和正常运行的重要因素之一.结合现场声波监测资料,采用裂隙岩体等效弹塑性本构模型以及基于Hoek-Brown参数的偏应力破坏准则对开挖松弛区进行模拟与评价.此外,重点关注洞室群围岩在地下厂房开挖过程中渗透特性的演化,并采用SVA方法对其防渗排水措施的渗控效应进行分析与评价.研究结果表明:采用塑性屈服区以及偏应力破坏准则表征围岩开挖松弛效应是合理的,高地应力、低强度应力比是造成锦屏一级地下厂房围岩开挖松弛区较大的主要原因;洞室群围岩在地下厂房开挖过程中渗透特性可增大3个数量级,影响范围达35m;围岩渗透特性演化对渗流场具有显著影响,影响程度取决于与洞室群的距离以及防渗排水措施的渗控效应.  相似文献   

8.
为了研究结构面对中等地应力区地下厂房开挖过程中应力调整以及围岩变形破坏的影响,以某抽水蓄能电站地下厂房为研究对象,采用离散元软件3DEC对其开挖过程进行仿真计算.研究表明:在开挖断面不大时,掌子面附近的结构面会阻挡围岩应力向深部的调整,加剧拱脚处的应力集中程度,使围岩以应力型破坏为主;当开挖断面增大,围岩卸荷松弛明显,结构面控制型破坏将逐渐占优;用3DEC模拟出的陡倾型结构面的张开是围岩位移产生的主要原因,且其张开位移受前几期的开挖影响较大.研究成果可为类似陡倾角大跨度地下工程开挖的稳定性分析及支护设计提供借鉴.  相似文献   

9.
地下水封洞库施工期洞室围岩变形松弛特征与规律对其稳定性评价与灾害防治具有重要意义。基于地下水封洞库工程特征与典型洞库工程实例,整理分析了大量洞室围岩内部变形、表层变形、波速与锚杆应力等监测数据。结果表明:预埋的多点位移计测点位移主要为0.5-3mm,收敛位移监测值主要为4-8mm,拱顶沉降监测值主要为3-6mm,围岩时效变形不明显;围岩变形与爆破开挖有关,当掌子面或后续台阶开挖面接近监测断面时,变形出现陡增;围岩质量越差,开挖面空间效应越不明显;基于典型围岩特征曲线经验公式,结合预埋的多点位移计监测数据与数值模拟,提出了地下水封洞库洞室围岩损失位移确定方法,发现损失位移占最终收敛位移50%-60%;基于波速变化率提出围岩松弛程度评价指标,发现围岩最大松弛程度约为0.47,松弛深度为1.5m;洞室围岩锚杆受力普遍较小,锚杆拉应力与围岩变形基本同步变化。  相似文献   

10.
某抽水蓄能电站地下厂房为大跨度、高边墙地下洞室群,地质条件复杂,分布软弱夹层,高边墙及洞室间岩体的稳定性是洞室设计的关键因素。根据水压致裂法地应力测试数据计算侧压力系数,构造初始地应力场,按照开挖顺序建立三维弹塑性计算模型,分析地下洞室群围岩应力与变形特征、塑性区分布,评价了地下厂房洞室群围岩稳定性,为洞室设计提供科学依据和基础数据。  相似文献   

11.
为了有效解决莱新铁矿复杂地质条件下、矿岩破碎、裂隙水发育矿体开采问题。提出了六边形采场结构阶段充填采矿方法,并应用2D–σ数值分析系统对其采场结构稳定性进行分析。分析结果表明,六边形采场结构与矩形采场结构相比,能够较好地适应应力转移规律;对六边形采场结构不同结构参数下的应力分布、变形特征及塑性区大小等进行了数值分析。六边形采场结构是一种稳定结构;在莱新铁矿的模拟过程中,其采场围岩及充填体未出现较大拉应力和塑性区,证明该方法在莱新铁矿的可行性;并提出了该方法在莱新铁矿应用的最佳结构参数,该方法对类似条件矿山开采具有参考价值。  相似文献   

12.
以西北地区某市水利工程地下洞室工程为例,依据洞室围岩位移监测资料,研究了地下洞室围岩变形破坏特点及其主要影响因素。研究结果认为地下洞室开挖后,顶拱围岩沉降量明显大于侧壁位移收敛量,并指出了影响区内地下洞室围岩变形破坏的主要因素表现在七个方面。该项研究将有助于进一步研究地下洞室围岩变形破坏机理,同时也有利于保障地下洞室工程顺利进行。  相似文献   

13.
脆弹粘性岩体高边坡稳定的损伤断裂力学机制研究   总被引:11,自引:0,他引:11  
边坡工程岩体的力学性态与其所处的应力环境、物理环境以及开挖施工卸荷坡邦岩体变形的时空效应等许多因素密切相关.因而,似本文研讨的闪云斜长花岗岩这类脆弹粘性岩体高边坡工程坡邦卸荷带岩体的稳定问题,从损伤、断裂力学的观点言,本质上反映了三方面的力学机制,即:(1)边坡分部开挖引起坡邦岩体的卸荷损伤、断裂效应;(2)二次应力场作用下坡邦岩体产生的损伤、断裂时效变形与蠕变扩容;以及(3)在高地应力区,脆弹粘性岩体因开挖导致与其应变能骤然急剧释放有关的地动力作用.本文结合长江三峡高边坡船闸工程的岩体稳定问题,拟就上述的前两个方面的研究工作进展作一简要论述.  相似文献   

14.
利用节理岩体有限元程序,模拟了南芬铁矿1#驱动站大峒室的开挖与支护过程,分析了该峒室围岩局部失稳的原因,取得了令人满意的结论,对现场施工具有借鉴意义.  相似文献   

15.
地下圆形隧道开挖卸荷围岩弹塑性分析   总被引:1,自引:0,他引:1  
王新波  潘晓明 《河南科学》2010,28(9):1153-1156
针对地下圆形隧道,在分析开挖卸荷的基础上,分别给出了弹性和弹塑性围岩二次应力的计算表达式.在弹性不同侧压力条件下,分析了围压切向应力分布规律,当λ0.33时,圆形隧洞围岩将不出现拉应力.当围岩处于弹塑性状态时,考虑围岩稳定的前提下,扩大塑性区半径R,就可降低维持极限平衡状态所需的支护抗力pi,充分发挥了围岩的自承作用.  相似文献   

16.
露天转地下开采岩体稳定性三维数值模拟   总被引:8,自引:0,他引:8  
露天转地下开采围岩应力和工程尺度同时影响着地下工程和露天边坡的稳定性.通过三维数值模拟,揭示了露天边坡内地下开采采场周围和边坡的力学环境,探讨了围岩移动变形、应力分布和破坏机理,分析了边坡稳定性状况.研究表明,在扰动边坡下进行地下开采,坡脚处的局部弧形破坏区将进一步恶化,但不会影响边坡的整体稳定性.由于边坡的卸荷作用,导致采场上覆岩层成拱机制减弱,采空区覆岩存在整体垮冒的可能性.  相似文献   

17.
对坝基开挖工程岩体稳定性有影响的几个因素   总被引:1,自引:0,他引:1  
结合工程实例,探讨了初始地应力、构造地应力、开挖深度和开挖施工程序在坝基开挖工程中对岩体稳定性的影响,并得出了一些有价值的结论,可用于其他实际工程。  相似文献   

18.
岩体拉破坏非线性分析有限元程序的编制及其算例   总被引:4,自引:3,他引:1  
根据岩体拉破坏的本构关系建立了岩体拉破坏非线性分析的有限元程序,并用简单的算例证明了该有限元模型的合理性和程序编制的正确性·把该程序嵌入到一般的岩体弹性及弹塑性分析有限元程序中,较好地反映了岩体受拉应力作用的变形特征·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号