首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of sound begins when energy derived from an acoustic stimulus deflects the hair bundles on top of hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental physical challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part of the solution involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors that stabilize the structure further reduce the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of viscous and elastic forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.  相似文献   

2.
Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.  相似文献   

3.
Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing β-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.  相似文献   

4.
Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.  相似文献   

5.
Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.  相似文献   

6.
Rapid renewal of auditory hair bundles   总被引:14,自引:0,他引:14  
Stereocilia, also known as hair bundles, are mechanosensitive organelles of the sensory hair cells of the inner ear that can detect displacements on a nanometre scale and are supported by a rigid, dense core of actin filaments. Here we show that these actin-filament arrays are continuously remodelled by the addition of actin monomers to the stereocilium tips, and that the entire core of the stereocilium is renewed every 48 hours. This unexpected dynamic feature of stereocilia will help our understanding of how auditory sensory function develops and is maintained.  相似文献   

7.
Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.  相似文献   

8.
Root hairs are cellular protuberances extending from the root surface into the soil; there they provide access to immobile inorganic ions such as phosphate, which are essential for growth. Their cylindrical shape results from a polarized mechanism of cell expansion called tip growth in which elongation is restricted to a small area at the surface of the hair-forming cell (trichoblast) tip. Here we identify proteins that spatially control the sites at which cell growth occurs by isolating Arabidopsis mutants (scn1) that develop ectopic sites of growth on trichoblasts. We cloned SCN1 and showed that SCN1 is a RhoGTPase GDP dissociation inhibitor (RhoGDI) that spatially restricts the sites of growth to a single point on the trichoblast. We showed previously that localized production of reactive oxygen species by RHD2/AtrbohC NADPH oxidase is required for hair growth; here we show that SCN1/AtrhoGDI1 is a component of the mechanism that focuses RHD2/AtrbohC-catalysed production of reactive oxygen species to hair tips during wild-type development. We propose that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase.  相似文献   

9.
Identification of Vangl2 and Scrb1 as planar polarity genes in mammals   总被引:13,自引:0,他引:13  
In mammals, an example of planar cell polarity (PCP) is the uniform orientation of the hair cell stereociliary bundles within the cochlea. The PCP pathway of Drosophila refers to a conserved signalling pathway that regulates the coordinated orientation of cells or structures within the plane of an epithelium. Here we show that a mutation in Vangl2, a mammalian homologue of the Drosophila PCP gene Strabismus/Van Gogh, results in significant disruptions in the polarization of stereociliary bundles in mouse cochlea as a result of defects in the direction of movement and/or anchoring of the kinocilium within each hair cell. Similar, but less severe, defects are observed in animals containing a mutation in the LAP protein family gene Scrb1 (homologous with Drosophila scribble). Polarization defects in animals heterozygous for Vangl2 and Scrb1 are comparable with Vangl2 homozygotes, demonstrating genetic interactions between these genes in the regulation of PCP in mammals. These results demonstrate a role for the PCP pathway in planar polarization in mammals, and identify Scrb1 as a PCP gene.  相似文献   

10.
Mechanosensitivity of mammalian auditory hair cells in vitro   总被引:1,自引:0,他引:1  
I J Russell  G P Richardson  A R Cody 《Nature》1986,321(6069):517-519
Intracellular responses recorded in vitro from the cochleas of anaesthetized mammals have shown that the mechanoreceptive inner and outer hair cells are sharply tuned, accounting for many of the properties of the afferent fibres in the auditory nerve. However, in vivo it has not been possible to measure directly the excitatory mechanical input to these cells (the displacement of their mechanosensitive stereocilia) and thus to determine the relationship between the receptor potentials and displacement of their stereocilia. As a means of circumventing this technical difficulty, we have developed an organ culture of the mouse cochlea and here we describe the receptor potentials generated by the hair cells in response to direct displacement of their stereocilia.  相似文献   

11.
He DZ  Jia S  Dallos P 《Nature》2004,429(6993):766-770
Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.  相似文献   

12.
13.
使用碳纳米管AFM针尖的蛋白质高分辨率成像   总被引:1,自引:0,他引:1  
原子力显微镜(AFM)是分析生物分子结构的有效手段,而目前使用的探针针尖的性质限制了高分辨率图像的获得。该文将碳纳米管安装到原子力显微镜的传统针尖上,制作出碳纳米管针尖以解决这个问题。运用碳纳米管针尖在大气常温条件下获得了由3个单元组成的小鼠抗体IgG蛋白质的Y形结构,并且分子的尺寸与X射线晶体衍射的结果非常接近,这种效果用传统针尖是无法获得的。获得的蛋白质分子超微结构的高分辨率图像为研究蛋白质分子功能提供了有价值的信息。  相似文献   

14.
15.
Kennedy HJ  Crawford AC  Fettiplace R 《Nature》2005,433(7028):880-883
It is generally accepted that the acute sensitivity and frequency discrimination of mammalian hearing requires active mechanical amplification of the sound stimulus within the cochlea. The prevailing hypothesis is that this amplification stems from somatic electromotility of the outer hair cells attributable to the motor protein prestin. Thus outer hair cells contract and elongate in synchrony with the sound-evoked receptor potential. But problems arise with this mechanism at high frequencies, where the periodic component of the receptor potential will be attenuated by the membrane time constant. On the basis of work in non-mammalian vertebrates, force generation by the hair bundles has been proposed as an alternative means of boosting the mechanical stimulus. Here we show that hair bundles of mammalian outer hair cells can also produce force on a submillisecond timescale linked to adaptation of the mechanotransducer channels. Because the bundle motor may ultimately be limited by the deactivation rate of the channels, it could theoretically operate at high frequencies. Our results show the existence of another force generator in outer hair cells that may participate in cochlear amplification.  相似文献   

16.
利用模式生物斑马鱼,通过微注射的方法,研究了人肝脏特异性转录因子TCP10L对斑马鱼早期胚胎发育的影响.结果显示:人TCP10L基因对斑马鱼胚胎发育有一定的毒性.表现为早期的脊索发育异常,个体严重畸形;当血液循环出现后,表现为血流延缓和围心腔水肿等症状.该项研究表明:人肝脏特异性转录因子TCP10L在斑马鱼胚胎中的过表达会引起显著的形态异常和心血管障碍,并且这种影响与其是否在斑马鱼肝内的特异表达有关,为进一步探明该转录因子在人肝脏内发挥的功能奠定了基础.  相似文献   

17.
Members of the tumour-necrosis factor receptor (TNFR) family that contain an intracellular death domain initiate signalling by recruiting cytoplasmic death domain adapter proteins. Edar is a death domain protein of the TNFR family that is required for the development of hair, teeth and other ectodermal derivatives. Mutations in Edar-or its ligand, Eda-cause hypohidrotic ectodermal dysplasia in humans and mice. This disorder is characterized by sparse hair, a lack of sweat glands and malformation of teeth. Here we report the identification of a death domain adapter encoded by the mouse crinkled locus. The crinkled mutant has an hypohidrotic ectodermal dysplasia phenotype identical to that of the edar (downless) and eda (Tabby) mutants. This adapter, which we have called Edaradd (for Edar-associated death domain), interacts with the death domain of Edar and links the receptor to downstream signalling pathways. We also identify a missense mutation in its human orthologue, EDARADD, that is present in a family affected with hypohidrotic ectodermal dysplasia. Our findings show that the death receptor/adapter signalling mechanism is conserved in developmental, as well as apoptotic, signalling.  相似文献   

18.
对导电原子力显微镜在介质层电流图像检测中存在的假像进行了研究。发现这种假像归因于导电探针针尖较大的直径,其大小与被检测样品表面的缺陷点、漏洞、沟穴大小相关。研究表明,为提高图像分辨率,避免检测过程中存在的假像,需要使用具有纳米直径针尖的超尖导电探针。  相似文献   

19.
系统地筛选了甘薯茎尖蛋白质最适的提取酶解条件,比较了淀粉加工型和蔬菜专用型甘薯茎尖的营养成分,研究结果表明:用新鲜甘薯茎尖质量2倍体积的0.1%NaHSO3溶液、30 ℃下搅拌30 min,水溶性蛋白质的提取率可达52%;在此条件下加入木瓜蛋白酶、50 ℃下搅拌水解4 h,水溶性蛋白质的提取率可提高到75%,茎尖蛋白质的水解度可达24.8%.该方法制备的富含功能多肽的甘薯茎尖粉末的蛋白质、游离氨基酸和黄酮类物质的质量分数分别为24.19%、5.41%和3.31%,与蔬菜专用型甘薯茎尖制备的产品无显著差异.该研究开发了利用淀粉加工型甘薯茎尖制备富含营养和功能多肽的保健食品的工艺,为利用田间废弃的甘薯茎尖开辟了新的途径.  相似文献   

20.
Jeganathan KB  Malureanu L  van Deursen JM 《Nature》2005,438(7070):1036-1039
Cdc20 and Cdh1 are the activating subunits of the anaphase-promoting complex (APC), an E3 ubiquitin ligase that drives cells into anaphase by inducing degradation of cyclin B and the anaphase inhibitor securin. To prevent chromosome missegregation, APC activity directed against these mitotic regulators must be inhibited until all chromosomes are properly attached to the mitotic spindle. Here we show that in mitosis timely destruction of securin by APC is regulated by the nucleocytoplasmic transport factors Rae1 and Nup98. We show that combined Rae1 and Nup98 haploinsufficiency in mice results in premature separation of sister chromatids, severe aneuploidy and untimely degradation of securin. We find that Rae1 and Nup98 form a complex with Cdh1-activated APC (APC(Cdh1)) in early mitosis and specifically inhibit APC(Cdh1)-mediated ubiquitination of securin. Dissociation of Rae1 and Nup98 from APC(Cdh1) coincides with the release of the mitotic checkpoint protein BubR1 from Cdc20-activated APC (APC(Cdc20)) at the metaphase to anaphase transition. Together, our results suggest that Rae1 and Nup98 are temporal regulators of APC(Cdh1) that maintain euploidy by preventing unscheduled degradation of securin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号