首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Rapid renewal of auditory hair bundles   总被引:14,自引:0,他引:14  
Stereocilia, also known as hair bundles, are mechanosensitive organelles of the sensory hair cells of the inner ear that can detect displacements on a nanometre scale and are supported by a rigid, dense core of actin filaments. Here we show that these actin-filament arrays are continuously remodelled by the addition of actin monomers to the stereocilium tips, and that the entire core of the stereocilium is renewed every 48 hours. This unexpected dynamic feature of stereocilia will help our understanding of how auditory sensory function develops and is maintained.  相似文献   

2.
Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.  相似文献   

3.
Direct observation of microtubule dynamics in living cells   总被引:42,自引:0,他引:42  
P J Sammak  G G Borisy 《Nature》1988,332(6166):724-726
The study of cell locomotion is fundamental to such diverse processes as embryonic development, wound healing and metastasis. Since microtubules play a role in establishing the leading lamellum and maintaining cell polarity, it is important to understand their dynamic behaviour. In vitro, subunits exchange with polymer by treadmilling and by dynamic instability. Disassembly events can be complete (catastrophic) or incomplete (tempered). In vivo, microtubules are in dynamic equilibrium with subunits with a half-time for turnover of 4-20 min. Microtubules grow by elongation of their ends and are replaced one by one with turnover being most rapid at the periphery. Although previous results are consistent with dynamic instability, we sought to directly test the mechanism of turnover. Direct observations of fluorescent microtubules in the fibroblast lamellum show that individual microtubules undergo rounds of assembly and disassembly from the same end. Reorganization of the microtubule network occurs by a tempered mode of dynamic instability.  相似文献   

4.
He DZ  Jia S  Dallos P 《Nature》2004,429(6993):766-770
Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.  相似文献   

5.
Mechanosensitivity of mammalian auditory hair cells in vitro   总被引:1,自引:0,他引:1  
I J Russell  G P Richardson  A R Cody 《Nature》1986,321(6069):517-519
Intracellular responses recorded in vitro from the cochleas of anaesthetized mammals have shown that the mechanoreceptive inner and outer hair cells are sharply tuned, accounting for many of the properties of the afferent fibres in the auditory nerve. However, in vivo it has not been possible to measure directly the excitatory mechanical input to these cells (the displacement of their mechanosensitive stereocilia) and thus to determine the relationship between the receptor potentials and displacement of their stereocilia. As a means of circumventing this technical difficulty, we have developed an organ culture of the mouse cochlea and here we describe the receptor potentials generated by the hair cells in response to direct displacement of their stereocilia.  相似文献   

6.
Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.  相似文献   

7.
The detection of sound begins when energy derived from an acoustic stimulus deflects the hair bundles on top of hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental physical challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part of the solution involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors that stabilize the structure further reduce the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of viscous and elastic forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.  相似文献   

8.
The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells.  相似文献   

9.
Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate   总被引:15,自引:0,他引:15  
P A Janmey  T P Stossel 《Nature》1987,325(6102):362-364
The actin-binding protein gelsolin requires micromolar concentrations of calcium ions to sever actin filaments, to potentiate its binding to the end of the filament and to promote the polymerization of monomeric actin into filaments. Because transient increases in both intracellular [Ca2+] and actin polymerization accompany the cellular response to certain stimuli, it has been suggested that gelsolin regulates the reversible assembly of actin filaments that accompanies such cellular activations. But other evidence suggests that these activities do not need increased cytoplasmic [Ca2+] and that once actin-gelsolin complexes form in the presence of Ca2+ in vitro, removal of free Ca2+ causes dissociation of only one of two bound actin monomers from gelsolin and the resultant binary complexes cannot sever actin filaments. The finding that cellular gelsolin-actin complexes can be dissociated suggests that a Ca2+-independent regulation of gelsolin also occurs. Here we show that, like the dissociation of profilin-actin complexes, phosphatidylinositol 4,5-bisphosphate, which undergoes rapid turnover during cell stimulation, strongly inhibits the actin filament-severing properties of gelsolin, inhibits less strongly the nucleating ability of this protein and restores the potential for filament-severing activity to gelsolin-actin complexes.  相似文献   

10.
Disruption of the actin cytoskeleton in yeast capping protein mutants   总被引:42,自引:0,他引:42  
J F Amatruda  J F Cannon  K Tatchell  C Hug  J A Cooper 《Nature》1990,344(6264):352-354
Capping protein controls the addition of actin subunits to the barbed end of actin filaments and nucleates actin polymerization in vitro. Capping protein has been identified in all eukaryotic cells examined so far; it is a heterodimer with subunits of relative molecular masses 32,000-36,000 (alpha-subunit) and 28,000-32,000 (beta-subunit). In skeletal muscle, capping protein (CapZ) probably binds the barbed ends of actin filaments at the Z line. The in vivo role of this protein in non-muscle cells is not known. We report here the characterization of CAP2, the single gene encoding the beta-subunit of capping protein in Saccharomyces cerevisiae. Yeast cells in which the CAP2 gene was disrupted by an insertion or a deletion had an abnormal actin distribution, including the loss of actin cables. The mutant cells were round and large, with a heterogeneous size distribution, and, although viable, grew more slowly than congenic wild-type cells. Chitin, a cell wall component restricted to the mother-bud junction in wild-type budding yeast, was found on the entire mother cell surface in the mutants. The phenotype of CAP2 disruption resembled that of temperature-sensitive mutations in the yeast actin gene ACT1, indicating that capping protein regulates actin-filament distribution in vivo.  相似文献   

11.
Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.  相似文献   

12.
Actin microfilament dynamics in locomoting cells   总被引:71,自引:0,他引:71  
J A Theriot  T J Mitchison 《Nature》1991,352(6331):126-131
The dynamic behaviour of actin filaments has been directly observed in living, motile cells using fluorescence photoactivation. In goldfish epithelial keratocytes, the actin microfilaments in the lamellipodium remain approximately fixed relative to the substrate as the cell moves over them, regardless of cell speed. The rate of turnover of actin subunits in the lamellipodium is remarkably rapid. Cell movement is directly and tightly coupled to the formation of new actin filaments at the leading edge.  相似文献   

13.
The protein p27Kip1 is an inhibitor of cell division. An increase in p27 causes proliferating cells to exit from the cell cycle, and a decrease in p27 is necessary for quiescent cells to resume division. Abnormally low amounts of p27 are associated with pathological states of excessive cell proliferation, especially cancers. In normal and tumour cells, p27 is regulated primarily at the level of translation and protein turnover. Phosphorylation of p27 on threonine 187 (T187) by cyclin-dependent kinase 2 (Cdk2) is thought to initiate the major pathway for p27 proteolysis. To critically test the importance of this pathway in vivo, we replaced the murine p27 gene with one that encoded alanine instead of threonine at position 187 (p27T187A). Here we show that cells expressing p27T187A were unable to downregulate p27 during the S and G2 phases of the cell cycle, but that this had a surprisingly modest effect on cell proliferation both in vitro and in vivo. Our efforts to explain this unexpected result led to the discovery of a second proteolytic pathway for controlling p27, one that is activated by mitogens and degrades p27 exclusively during G1.  相似文献   

14.
Liberman MC  Gao J  He DZ  Wu X  Jia S  Zuo J 《Nature》2002,419(6904):300-304
Hearing sensitivity in mammals is enhanced by more than 40 dB (that is, 100-fold) by mechanical amplification thought to be generated by one class of cochlear sensory cells, the outer hair cells. In addition to the mechano-electrical transduction required for auditory sensation, mammalian outer hair cells also perform electromechanical transduction, whereby transmembrane voltage drives cellular length changes at audio frequencies in vitro. This electromotility is thought to arise through voltage-gated conformational changes in a membrane protein, and prestin has been proposed as this molecular motor. Here we show that targeted deletion of prestin in mice results in loss of outer hair cell electromotility in vitro and a 40-60 dB loss of cochlear sensitivity in vivo, without disruption of mechano-electrical transduction in outer hair cells. In heterozygotes, electromotility is halved and there is a twofold (about 6 dB) increase in cochlear thresholds. These results suggest that prestin is indeed the motor protein, that there is a simple and direct coupling between electromotility and cochlear amplification, and that there is no need to invoke additional active processes to explain cochlear sensitivity in the mammalian ear.  相似文献   

15.
Leake MC  Chandler JH  Wadhams GH  Bai F  Berry RM  Armitage JP 《Nature》2006,443(7109):355-358
Many essential cellular processes are carried out by complex biological machines located in the cell membrane. The bacterial flagellar motor is a large membrane-spanning protein complex that functions as an ion-driven rotary motor to propel cells through liquid media. Within the motor, MotB is a component of the stator that couples ion flow to torque generation and anchors the stator to the cell wall. Here we have investigated the protein stoichiometry, dynamics and turnover of MotB with single-molecule precision in functioning bacterial flagellar motors in Escherichia coli. We monitored motor function by rotation of a tethered cell body, and simultaneously measured the number and dynamics of MotB molecules labelled with green fluorescent protein (GFP-MotB) in the motor by total internal reflection fluorescence microscopy. Counting fluorophores by the stepwise photobleaching of single GFP molecules showed that each motor contains approximately 22 copies of GFP-MotB, consistent with approximately 11 stators each containing two MotB molecules. We also observed a membrane pool of approximately 200 GFP-MotB molecules diffusing at approximately 0.008 microm2 s(-1). Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed turnover of GFP-MotB between the membrane pool and motor with a rate constant of the order of 0.04 s(-1): the dwell time of a given stator in the motor is only approximately 0.5 min. This is the first direct measurement of the number and rapid turnover of protein subunits within a functioning molecular machine.  相似文献   

16.
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen capable of rapid movement through the host cell cytoplasm. The biophysical basis of the motility of L. monocytogenes is an interesting question in its own right, the answer to which may shed light on the general processes of actin-based motility in cells. Moving intracellular bacteria display phase-dense 'comet tails' made of actin filaments, the formation of which is required for bacterial motility. We have investigated the dynamics of the actin filaments in the comet tails using the technique of photoactivation of fluorescence, which allows monitoring of the movement and turnover of labelled actin filaments after activation by illumination with ultraviolet light. We find that the actin filaments remain stationary in the cytoplasm as the bacterium moves forward, and that length of the comet tails is linearly proportional to the rate of movement. Our results imply that the motile mechanism involves continuous polymerization and release of actin filaments at the bacterial surface and that the rate of filament generation is related to the rate of movement. We suggest that actin polymerization provides the driving force for bacterial propulsion.  相似文献   

17.
Liu J  Taylor DW  Krementsova EB  Trybus KM  Taylor KA 《Nature》2006,442(7099):208-211
Unconventional myosin V (myoV) is an actin-based molecular motor that has a key function in organelle and mRNA transport, as well as in membrane trafficking. MyoV was the first member of the myosin superfamily shown to be processive, meaning that a single motor protein can 'walk' hand-over-hand along an actin filament for many steps before detaching. Full-length myoV has a low actin-activated MgATPase activity at low [Ca2+], whereas expressed constructs lacking the cargo-binding domain have a high activity regardless of [Ca2+] (refs 5-7). Hydrodynamic data and electron micrographs indicate that the active state is extended, whereas the inactive state is compact. Here we show the first three-dimensional structure of the myoV inactive state. Each myoV molecule consists of two heads that contain an amino-terminal motor domain followed by a lever arm that binds six calmodulins. The heads are followed by a coiled-coil dimerization domain (S2) and a carboxy-terminal globular cargo-binding domain. In the inactive structure, bending of myoV at the head-S2 junction places the cargo-binding domain near the motor domain's ATP-binding pocket, indicating that ATPase inhibition might occur through decreased rates of nucleotide exchange. The actin-binding interfaces are unobstructed, and the lever arm is oriented in a position typical of strong actin-binding states. This structure indicates that motor recycling after cargo delivery might occur through transport on actively treadmilling actin filaments rather than by diffusion.  相似文献   

18.
In platelets, agonists that stimulate phosphoinositide turnover cause the rapid phosphorylation of a protein of apparent relative molecular mass (Mr) 40-47,000, called P47, by protein kinase C (PKC). Diverse identities have been ascribed to P47 including lipocortin, inositol 1,4,5-trisphosphate 5-phosphomonoesterase, pyruvate dehydrogenase alpha subunit and an actin regulatory protein. We have isolated human P47 clones by immunological screening of a lambda gt11 complementary DNA library from HL-60 cells, a human promyelocytic leukaemia cell line. P47 recombinants thus identified hybridized to a 3.0 kilobase (kb) messenger RNA in mature white blood cell lines; the same mRNA was induced in HL-60 cells during differentiation. A 1,050 base pair (bp) open reading frame that could encode a protein of Mr40,087 was confirmed by comparison with peptide sequences from platelet P47, and by expression of the putative recombinant P47 in E. coli and in vitro. The P47 sequence appears to have been conserved throughout vertebrate evolution, and is not similar to any other known sequence including human lipocortin and the alpha subunit of pyruvate dehydrogenase. The P47 protein contains a potential Ca2+-binding 'EF-hand' structure and a region that strongly resembles known PKC phosphorylation sites.  相似文献   

19.
Identification of a widespread nuclear actin binding protein   总被引:16,自引:0,他引:16  
  相似文献   

20.
Root hairs are cellular protuberances extending from the root surface into the soil; there they provide access to immobile inorganic ions such as phosphate, which are essential for growth. Their cylindrical shape results from a polarized mechanism of cell expansion called tip growth in which elongation is restricted to a small area at the surface of the hair-forming cell (trichoblast) tip. Here we identify proteins that spatially control the sites at which cell growth occurs by isolating Arabidopsis mutants (scn1) that develop ectopic sites of growth on trichoblasts. We cloned SCN1 and showed that SCN1 is a RhoGTPase GDP dissociation inhibitor (RhoGDI) that spatially restricts the sites of growth to a single point on the trichoblast. We showed previously that localized production of reactive oxygen species by RHD2/AtrbohC NADPH oxidase is required for hair growth; here we show that SCN1/AtrhoGDI1 is a component of the mechanism that focuses RHD2/AtrbohC-catalysed production of reactive oxygen species to hair tips during wild-type development. We propose that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号