首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设G是一个具有n个顶点、m条边的简单图,S(G)表示G的Seidel矩阵,d_i表示顶点v_i的度,又以DS(G)=diag(n-1-2d_1,n-1-2d_2,…,n-1-2d_n)来表示对角矩阵,再依次定义图G的Seidel拉普拉斯矩阵为SL(G)=DS(G)-S(G)、图G的Seidel无符号拉普拉斯矩阵为SL~+(G)=DS(G)+S(G)和图G的Seidel无符号拉普拉斯能量为■,这里σ1L+,σ2L+,…,σnL+为矩阵SL+(G)的特征值.文章利用不等式讨论单圈图G的Seidel无符号拉普拉斯能量的上界,得到了几个有意义的结果.  相似文献   

2.
设G是一个具有n个顶点的简单图,S(G)表示G的Seidel矩阵,令d_i表示顶点v_i的度,设DS(G)=diag(n-1-2d_1,n-1-2d_2,…,n-1-2d_n)表示对角矩阵。定义图G的Seidel拉普拉斯矩阵为SL(G)=DS(G)-S(G),设它的特征值为σ~L_1,σ~L_2,…,σ~L_n,定义Seidel拉普拉斯能量为■。利用柯西-许瓦茨不等式和琴生不等式,主要讨论单圈图U_n的Seidel拉普拉斯能量的界,得到了几个有意义的结果。  相似文献   

3.
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.  相似文献   

4.
图的无符号拉普拉斯矩阵定义为其度矩阵与邻接矩阵之和,其最大特征值称为图的无符号拉普拉斯谱半径.本文证明了若连通图G的无符号拉普拉斯谱半径大于2(△(G)+1/△(G))-3/2,那么G中必定含2个最大度点.  相似文献   

5.
设图G是一个有n个顶点、m条边的简单图,Q(G)为图G的无符号拉普拉斯矩阵,本文利用图的度序列平方和上界,给出了简单图无符号拉普拉斯谱半径的一个新的上界。  相似文献   

6.
令A(G)表示G的邻接矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.在这篇文章中,我们分别确定了给定点连通度、给定块数和给定悬挂点数的图类中无符号拉普拉斯谱半径最大的图的结构.  相似文献   

7.
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值.  相似文献   

8.
设G是一个简单图,Q( G)是它的无符号拉普拉斯矩阵。本文讨论了简单图G在添加一条边时其无符号拉普拉斯矩阵Q(G)的谱在两处发生整数变化的条件。  相似文献   

9.
设G=(V,E)是一个具有m条边的n阶简单图,γ(G)是图G的无符号拉普拉斯谱半径。本文利用图的无符号拉普拉斯谱半径讨论了图的Hamilton性,并分别给出了一个图包含Hamilton路以及泛圈图的充分条件。  相似文献   

10.
D为图的G度序列对角矩阵,A为图的邻接矩阵.Q=D+A为图的无符号拉普拉斯矩阵.Q的最大特征值ξ(G)称为图G的无符号拉普拉斯谱半径.这里将图的2度,平均2度等概念推广到k度与平均k度,得到了图的关于无符号拉普拉斯谱半径的一个新的上、下界.最后举例与图的几个已知经典的界进行了比较.  相似文献   

11.
双圈图的无符号拉普拉斯特征多项式的系数   总被引:2,自引:2,他引:0  
设图G为简单图,G的无符号拉普拉斯矩阵Q(G)=D(G)+A(G),其特征多项式记为φ(G,λ)=∑n i=0pi(G)λn-i.给出了双圈图的无符号拉普拉斯特征多项式的常数项pn(G),并证明了pn(G)仅与双圈图的基图有关.  相似文献   

12.
利用无符号拉普拉斯谱半径与特征向量之间的关系式,研究有n个顶点、最小度为δ且边连通度k′<δ的这一类图中无符号拉普拉斯谱半径最大的图.假设G0是这一类图中无符号拉普拉斯谱半径最大的图,证明G0?Bkn,′δ,其中Bkn,′δ是从Kδ+1和Kn-δ-1之间加入k′条边获得的.  相似文献   

13.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离. 令TrG(vi)书版无此符表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵. 图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

14.
本文研究并给出了禁用kP_3的谱必要条件。以禁用kP_3的边数必要条件为出发点,考虑到图的极端谱与边数之间的联系,利用图G的邻接谱半径给出了禁用kP_3的谱必要条件,并利用图G的无符号拉普拉斯谱半径给出了禁用kP3的无符号拉普拉斯谱必要条件,同时证明了相应的定理。  相似文献   

15.
设G是一个n阶的简单有向连通图,令A(G)为有向图G的邻接矩阵,D(G)为有向图G的出度对角矩阵,则有向图G的无符号拉普拉斯矩阵可以表示为Q(G)=A(G)+D(G).利用图中顶点v_i的出度d_i~+和平均二次出度m_i~+,给出一些有向图G的无符号拉普拉斯矩阵谱半径q_1(G)更精细化的上下界,并通过数值例子证实新上下界的有效性.  相似文献   

16.
图G的无符号的拉普拉斯Estrada指标SLEE(G)(Estrada指标EE(G))定义为SLEE(G)=n∑i=1eqi(EE(G)=n∑i=1eλi).设Tkn为n阶k-树的集合.利用数学分析中幂级数和代数图论中谱距的方法,建立了这两类指标的伪序,结合反证法,刻画了Tk n中具有第一、第二最大的无符号的拉普拉斯Estrada指标(Estrada指标)的极值图.  相似文献   

17.
设图G为简单连通图,图G的独立数α=α(G)指的是图中顶点独立集最大基数,本文确定了给定独立数α=n-2,n-3条件下一类n阶连通图的无符号拉普拉斯谱半径的下界。  相似文献   

18.
图G的顶点集V(G)={v1,v2,…,vn},其路矩阵记为P(G)=(pij)n×n,pij表示图中vi,vj之间内部顶点不相交路径的最大数目。定义路拉普拉斯矩阵和路无符号拉普拉斯矩阵并得到了其谱半径和能量的界。  相似文献   

19.
设G是一个简单无向图,A(G)是图G的(0,1)邻接矩阵.定义S(G)=J-I-2A(G)是图G的Seidel矩阵,SG(λ)=det(λI-S(G))是图G的Seidel特征多项式(本文中简记为Seidel多项式),其中I是单位矩阵,J是全1矩阵.如果SG(λ)的特征值都是整数,则图G被称为是S-整图.本文主要研究完全四部图G=Kn1,n2,n3,n4的Seidel多项式及SG(λ)的特征根,给出了完全四部图Kn1,n2,n3,n4是S-整图的充要条件.  相似文献   

20.
设G是具有n个顶点和m条边的简单无向图,Q(G)是图G的无符号拉普拉斯矩阵.讨论了Q(G)的谱半径和与谱半径对应的特征向量的分量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号