首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calcium sensor in the sodium channel modulates cardiac excitability.   总被引:11,自引:0,他引:11  
Sodium channels are principal molecular determinants responsible for myocardial conduction and maintenance of the cardiac rhythm. Calcium ions (Ca2+) have a fundamental role in the coupling of cardiac myocyte excitation and contraction, yet mechanisms whereby intracellular Ca2+ may directly modulate Na channel function have yet to be identified. Here we show that calmodulin (CaM), a ubiquitous Ca2+-sensing protein, binds to the carboxy-terminal 'IQ' domain of the human cardiac Na channel (hH1) in a Ca2+-dependent manner. This binding interaction significantly enhances slow inactivation-a channel-gating process linked to life-threatening idiopathic ventricular arrhythmias. Mutations targeted to the IQ domain disrupted CaM binding and eliminated Ca2+/CaM-dependent slow inactivation, whereas the gating effects of Ca2+/CaM were restored by intracellular application of a peptide modelled after the IQ domain. A naturally occurring mutation (A1924T) in the IQ domain altered hH1 function in a manner characteristic of the Brugada arrhythmia syndrome, but at the same time inhibited slow inactivation induced by Ca2+/CaM, yielding a clinically benign (arrhythmia free) phenotype.  相似文献   

2.
The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the alpha-subunit of the voltage-gated sodium channel, Na(v)1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Na(v)1.7 by co-expression of wild-type or mutant human Na(v)1.7 with sodium channel beta(1) and beta(2) subunits in HEK293 cells. In cells expressing mutant Na(v)1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.  相似文献   

3.
4.
Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.  相似文献   

5.
Payandeh J  Scheuer T  Zheng N  Catterall WA 《Nature》2011,475(7356):353-358
Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7?? resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~4.6?? wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.  相似文献   

6.
Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.  相似文献   

7.
New ideas about atrial fibrillation 50 years on.   总被引:95,自引:0,他引:95  
Stanley Nattel 《Nature》2002,415(6868):219-226
Atrial fibrillation is a condition in which control of heart rhythm is taken away from the normal sinus node pacemaker by rapid activity in different areas within the upper chambers (atria) of the heart. This results in rapid and irregular atrial activity and, instead of contracting, the atria only quiver. It is the most common cardiac rhythm disturbance and contributes substantially to cardiac morbidity and mortality. For over 50 years, the prevailing model of atrial fibrillation involved multiple simultaneous re-entrant waves, but in light of new discoveries this hypothesis is now undergoing re-evaluation.  相似文献   

8.
R Coronado  R Latorre 《Nature》1982,298(5877):849-852
The ionic currents underlying the cardiac action potential are believed to be much more complex than those in nerve. During the cardiac action potential, various membrane channels control the flow of K+, Na+, Ca2+ and Cl- across the sarcolemma of cardiac muscle cells. Thus, it has become increasingly clear that a detailed knowledge of the mechanisms that activate (or inactivate) heart channels is required to understand cardiac excitability. We report here the use of planar lipid bilayer techniques to detect and characterize K+ and Cl- channels in purified heart sarcolemma membrane vesicles. We have identified four different types of channel on the basis of their selectivity, conductance and gating kinetics. We present in some detail the properties of a K+ channel and a Cl- channel. We have tentatively identified the K+ channel with the ix type of current found in Purkinje, myocardial ventricular and atrial fibres. The chloride channel might be related to the transient chloride current found in Purkinje fibres.  相似文献   

9.
T Tanabe  B A Adams  S Numa  K G Beam 《Nature》1991,352(6338):800-803
Membrane depolarization causes many kinds of ion channels to open, a process termed activation. For both Na+ channels and Ca2+ channels, kinetic analysis of current has suggested that during activation the channel undergoes several conformational changes before reaching the open state. Structurally, these channels share a common motif: the central element is a large polypeptide with four repeating units of homology (repeats I-IV), each containing a voltage-sensing region, the S4 segment. This suggests that the distinct conformational transitions inferred from kinetic analysis may be equated with conformational changes of the individual structural repeats. To investigate the molecular basis of channel activation, we constructed complementary DNAs encoding chimaeric Ca2+ channels in which one or more of the four repeats of the skeletal muscle dihydropyridine receptor are replaced by the corresponding repeats derived from the cardiac dihydropyridine receptor. We report here that repeat I determines whether the chimaeric Ca2+ channel shows slow (skeletal muscle-like) or rapid (cardiac-like) activation.  相似文献   

10.
B Hendrich  U Hardeland  H H Ng  J Jiricny  A Bird 《Nature》1999,401(6750):301-304
In addition to its well-documented effects on gene silencing, cytosine methylation is a prominent cause of mutations. In humans, the mutation rate from 5-methylcytosine (m5C) to thymine (T) is 10-50-fold higher than other transitions and the methylated sequence CpG is consequently under-represented. Over one-third of germline point mutations associated with human genetic disease and many somatic mutations leading to cancer involve loss of CpG. The primary cause of mutability appears to be hydrolytic deamination. Cytosine deamination produces mismatched uracil (U), which can be removed by uracil glycosylase, whereas m5C deamination generates a G x T mispair that cannot be processed by this enzyme. Correction of m5CpG x TpG mismatches may instead be initiated by the thymine DNA glycosylase, TDG. Here we show that MBD4, an unrelated mammalian protein that contains a methyl-CpG binding domain, can also efficiently remove thymine or uracil from a mismatches CpG site in vitro. Furthermore, the methyl-CpG binding domain of MBD4 binds preferentially to m5CpG x TpG mismatches-the primary product of deamination at methyl-CpG. The combined specificities of binding and catalysis indicate that this enzyme may function to minimize mutation at methyl-CpG.  相似文献   

11.
Chelur DS  Ernstrom GG  Goodman MB  Yao CA  Chen L  O' Hagan R  Chalfie M 《Nature》2002,420(6916):669-673
Mechanosensory transduction in touch receptor neurons is believed to be mediated by DEG/ENaC (degenerin/epithelial Na+ channel) proteins in nematodes and mammals. In the nematode Caenorhabditis elegans, gain-of-function mutations in the degenerin genes mec-4 and mec-10 (denoted mec-4(d) and mec-10(d), respectively) cause degeneration of the touch cells. This phenotype is completely suppressed by mutation in a third gene, mec-6 (refs 3, 4), that is needed for touch sensitivity. This last gene is also required for the function of other degenerins. Here we show that mec-6 encodes a single-pass membrane-spanning protein with limited similarity to paraoxonases, which are implicated in human coronary heart disease. This gene is expressed in muscle cells and in many neurons, including the six touch receptor neurons. MEC-6 increases amiloride-sensitive Na+ currents produced by MEC-4(d)/MEC-10(d) by approximately 30-fold, and functions synergistically with MEC-2 (a stomatin-like protein that regulates MEC-4(d)/MEC-10(d) channel activity) to increase the currents by 200-fold. MEC-6 physically interacts with all three channel proteins. In vivo, MEC-6 co-localizes with MEC-4, and is required for punctate MEC-4 expression along touch-neuron processes. We propose that MEC-6 is a part of the degenerin channel complex that may mediate mechanotransduction in touch cells.  相似文献   

12.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1991,353(6339):86-90
Inactivation of ion channels is important in the control of membrane excitability. For example, delayed-rectifier K+ channels, which regulate action potential repolarization, are inactivated only slowly, whereas A-type K+ channels, which affect action potential duration and firing frequency, have both fast and slow inactivation. Fast inactivation of Na+ and K+ channels may result from the blocking of the permeation pathway by a positively charged cytoplasmic gate such as the one encoded by the first 20 amino acids of the Shaker B (ShB) K+ channel. We report here that mutation of five highly conserved residues between the proposed membrane-spanning segments S4 and S5 (also termed H4) of ShB affects the stability of the inactivated state and alters channel conductance. One such mutation stabilizes the inactivated state of ShB as well as the inactivated state induced in the delayed-rectifier type K+ channel drk1 by the cytoplasmic application of the ShB N-terminal peptide. The S4-S5 loop, therefore, probably forms part of a receptor for the inactivation gate and lies near the channel's permeation pathway.  相似文献   

13.
H C Hartzell  P F Méry  R Fischmeister  G Szabo 《Nature》1991,351(6327):573-576
The positive inotropic effect of the sympathetic nervous system on the heart is partly mediated by an increase in the voltage-gated Ca2+ current (ICa). This increase is generally attributed to beta-adrenergic receptor-stimulated cyclic AMP-dependent phosphorylation of the Ca2+ channel. It has been suggested that cAMP-dependent phosphorylation cannot explain all the effects of beta-adrenergic agonists on ICa and that a parallel membrane-delimited pathway involving the 'direct' action of the G protein Gs also stimulates ICa. A precedent exists for such a membrane-delimited pathway in the activation of a K+ channel by acetylcholine in heart. A membrane-delimited pathway for stimulation of ICa might be important in rapid beat-to-beat regulation of contraction by the sympathetic nervous system, because isoproterenol may produce a biphasic increase in ICa with the rapid phase (tau = 150 ms) putatively mediated by the direct pathway and the slow phase (tau = 35 s) by cAMP-dependent phosphorylation. Here we report that in frog, rat, and guinea pig ventricular myocytes ICa increases slowly and monophasically in response to isoproterenol. The increase is completely blocked by inhibitors of cAMP-dependent phosphorylation. Furthermore, the time course of the increase in ICa closely parallels the increase in contractile force produced by sympathetic nerve stimulation. These data refute earlier suggestions that regulation of Ca2+ channels by the sympathetic nervous system involves or requires a direct G-protein pathway.  相似文献   

14.
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2?? resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.  相似文献   

15.
D B Light  J D Corbin  B A Stanton 《Nature》1990,344(6264):336-339
Atrial natriuretic peptide, acting through its second messenger guanosine 3',5'-cyclic monophosphate (cGMP), suppresses Na+ absorption across the renal inner-medullary collecting duct and increases urinary Na+ excretion. Patch clamp studies show that cGMP reduces Na+ absorption by inhibiting an amiloride-sensitive cation channel in the apical membrane. We have now examined, using the patch clamp technique, the molecular mechanisms of cGMP inhibition. Cyclic GMP directly and specifically reduced the probability of a single channel being open (open probability, Po) by 39% (inhibition constant, Ki = 7.6 x 10(-7) M) by a phosphorylation-independent mechanism. Cyclic GMP also inhibited the channel by activating cGMP-dependent protein kinase (cGMP-kinase). Exogenous cGMP-kinase completely inhibited the channel by a phosphorylation-dependent mechanism. Activation of a pertussis toxin-sensitive G protein by GTP-gamma-S blocked cGMP-kinase inhibition of the channel. By contrast, cGMP-kinase inhibition of Po was completely reversed by GTP-gamma-S. Taken together with the results of a previous study showing that a G protein activates the cation channel, these data indicate that cGMP-kinase and a G protein sequentially regulate the cation channel. Our results show that atrial natriuretic peptide, acting through cGMP, inhibits Na+ absorption across the inner-medullary collecting duct by a dual mechanism, and that cGMP-kinase inhibits the channel by a pathway involving a G protein.  相似文献   

16.
Muscular dysgenesis (mdg) is a spontaneous recessive lethal mutation in the mouse. The disease is characterized by a total lack of excitation-contraction coupling in embryonic skeletal muscle. This developmental abnormality is associated with a drastic deficiency in the expression of voltage-sensitive Ca2+ channels in skeletal muscle without alteration of the properties of voltage-sensitive Na+ channels or of voltage-sensitive Ca2+ channels in cardiac and neuronal cells. Membrane couplings between sarcoplasmic reticulum and the transverse tubules, known as triads, were also found to be drastically altered in embryonic muscle of the homozygous mutant (mdg/mdg). Triads in the mdg/mdg muscle were less numerous, disorganized and lacked spaced densities. This paper shows that co-culture of mdg/mdg myotubes with normal spinal cord neurons re-establishes Ca2+ channel activity, contraction and normal triad organization. The decrease thus cannot be due to a mutation of the Ca2+ channel as previously suggested. Normal nerve cells may supply an essential factor to mutant muscle cells.  相似文献   

17.
Sokolov S  Scheuer T  Catterall WA 《Nature》2007,446(7131):76-78
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle Na(V)1.4 channel. This 'gating pore current' is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-D-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. Our results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalaemic periodic paralysis. This gain-of-function gating pore current would contribute in an important way to the dominantly inherited membrane depolarization, action potential failure, flaccid paralysis and cytopathology that are characteristic of hypokalaemic periodic paralysis. A survey of other ion channelopathies reveals numerous examples of mutations that would be expected to cause gating pore current, raising the possibility of a broader impact of gating pore current in ion channelopathies.  相似文献   

18.
Gene mutations influence the folding kinetics of hepatitis delta virus(HDV) ribozyme. In this work, we study the effect of the double mutation on the folding kinetics of HDV ribozyme. By using the master equation method combined with RNA folding free energy landscape, we predict the folding kinetics of C13A:G82U and A16U:U79A mutated HDV sequences. Their folding pathways are identified by recursively searching the states with high net flux-in(out) population starting from the native state. The results indicate that the folding kinetics of C13A:G82U mutation sequence is bi-phasic, which is similar to the wild type(wt HDV) sequence. While the folding kinetics of A16U:U79A mutation sequence is mono-phasic, it quickly folds to the native state in 30 s. Thus, the folding kinetics of double mutated HDV ribozyme depends on the mutation sites.  相似文献   

19.
20.
在问卷调查及家系随访的基础上,在安徽省淮北市收集到一母系遗传非综合征耳聋家系,利用聚合酶链式反应-限制片段长度多态性分析(PCR-RFLP)和测序技术,检测了该家系成员线粒体DNA(mtDNA)上可导致非综合征耳聋的两个突变热点处(12S rRNA基因上的1 555位点和tRNASer(UCN)基因上的7 445位点)的碱基变化,发现该家系所有母系成员的mtDNA上都有A1555G同质型突变,但7 445位点无异常;进而对该家系两个表型明显不同母系成员(一例具有先天性耳聋表型,另一例听力正常)的mtDNA进行全长测序,结果未在mtDNA上发现除A1555G以外的其他位点突变,只发现了27处多态性序列变化,且两成员的mtDNA无序列差异.说明mtDNA上的A1555G同质型突变是该家系部分母系成员致聋的分子生物学基础之一;推测该家系A1555G突变携带者临床表型的差异可能与mtDNA多态性无关,而更可能是核修饰基因与A1555G突变协同作用的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号