首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
预制预应力混凝土板组合梁受力性能试验研究   总被引:2,自引:1,他引:1  
针对钢与混凝土连续组合梁负弯矩混凝土开裂问题提出了预制预应力混凝土板组合梁结构形式.为了对比和分析预制预应力混凝土板连续组合梁与常规连续组合梁力学性能的异同,进行了2根连续组合箱梁的静力试验.测试了在不同荷载作用下组合梁的变形、不同截面上构件的应变分布、混凝土的裂缝、钢与混凝土之间的相对滑移以及极限承载力等.由试验测试结果可得预制预应力混凝土板连续组合箱梁的初始开裂荷载和正常使用状态的极限荷载分别是普通连续组合梁的3.16倍和2.61倍.通过计算分析得到在相同预应力情况下的预制预应力混凝土板连续组合梁的开裂弯矩是常规预应力组合梁的1.54倍.  相似文献   

2.
以3片钢-混凝组合连续箱梁的受弯试验为基础,结合弹性理论提出了一种钢-混凝土组合梁跨中相对滑移的计算方法.该方法考虑了组合梁交界面滑移刚度的影响.试验结果表明:预应力对钢-混凝土组合梁的相对滑移影响较大,且有效预应力越大,作用效果越明显;通过计算值与理论值的分析比较,验证了本试验理论计算的可靠性和精度.  相似文献   

3.
预应力钢与高强混凝土组合梁变形性能   总被引:1,自引:0,他引:1  
通过预应力钢与高强混凝土组合梁的试验研究,得到其荷载-挠度曲线,分析表明,预应力的施加使钢与高强混凝土组合梁的弹性承载力提高10%左右;考虑交接面相对滑移对预应力钢与高强混凝土组合梁变形的影响,利用弹性分析理论建立了预应力钢与高强混凝土组合梁的变形微分方程,得到了跨中集中荷载、均布荷载及对称集中荷载作用下的预应力钢与高强混凝土组合梁的变形计算公式,计算结果与试验结果吻合良好·  相似文献   

4.
为精确计算钢-混凝土连续组合梁的挠度,在综合考虑钢梁与混凝土板之间的滑移效应及组合梁剪切变形影响的基础上,运用能量变分法推导出了钢-混凝土组合梁挠度计算的平衡微分方程,并给出了相对应的边界条件.通过引入均布荷载作用下钢-混凝土两跨连续组合梁的边界条件,求得了考虑滑移效应和剪切变形效应下组合梁的挠度计算公式,并对计算公式的正确性进行了验证.对钢-混凝土连续组合梁挠度做进一步分析表明:滑移效应会降低钢-混凝土连续组合梁的刚度,使组合梁产生附加挠度,并且会在中支点处引起梁负弯矩的增加,对混凝土板的受力产生不利影响.层间滑移位移随剪力连接件抗剪刚度的增大而减小,当剪力连接件抗剪刚度小于1200MPa时,层间滑移效应产生的附加挠度较大,对总挠度的影响也较大,应当考虑滑移效应对组合梁挠度的影响;当剪力连接件抗剪刚度大于1200MPa时,层间滑移效应产生的附加挠度较小,对总挠度的影响也较小,可以忽略滑移效应对组合梁挠度的影响.  相似文献   

5.
为获得波形钢腹板混凝土组合箱梁在纯扭矩作用下全过程的扭矩-扭率曲线,基于混凝土开裂前后2个阶段,建立了组合箱梁纯扭性能全过程分析模型.针对混凝土开裂前阶段,考虑截面宽高比和波形钢腹板形状的影响,提出了组合箱梁弹性扭转刚度的修正公式,同时引入普通钢筋和预应力筋的影响,修正了组合箱梁开裂扭矩计算公式.对于混凝土开裂后阶段,针对RASTM T中混凝土已开裂和忽略混凝土拉应力的不合理假定,提出了考虑扭率计算值修正的组合箱梁纯扭转非线性分析方法.然后,利用C++语言编制了组合箱梁纯扭性能全过程分析计算程序.分析结果表明,模型计算值与试验值吻合良好.该模型可准确预测波形钢腹板混凝土组合箱梁纯扭转受力全过程的扭矩-扭率曲线.  相似文献   

6.
为科学合理计算钢-混组合梁在长期荷载作用下的挠度,综合考虑钢梁与混凝土桥面板层间滑移效应、钢-混组合梁全截面剪切变形及混凝土桥面板收缩徐变的影响,运用能量变分法推导出钢-混组合梁挠度计算的控制微分方程.引入均布荷载作用下简支和两跨连续钢-混组合梁的自然边界条件,求解出了钢-混组合梁在这两种边界条件下的挠度计算公式.计算公式的可靠性得到了实测值和有限元值的验证.研究结果表明:考虑剪切变形与层间滑移后,两跨连续钢-混组合梁跨中最大挠度计算值相对于初等梁理论增大37.4%,而同时考虑混凝土收缩徐变后其挠度计算值增大58%;简支钢-混组合梁考虑混凝土的收缩徐变后挠度计算值相对于初等梁理论增大1.55倍,可见混凝土的收缩徐变效应对钢-混组合梁的挠度影响较大.研究成果可为实际工程中钢-混组合梁在长期荷载作用下的挠度计算提供理论依据.  相似文献   

7.
为科学合理计算钢-混组合梁在长期荷载作用下的挠度,综合考虑钢梁与混凝土桥面板层间滑移效应、钢-混组合梁全截面剪切变形及混凝土桥面板收缩徐变的影响,运用能量变分法推导出钢-混组合梁挠度计算的控制微分方程.引入均布荷载作用下简支和两跨连续钢-混组合梁的自然边界条件,求解出了钢-混组合梁在这两种边界条件下的挠度计算公式.计算公式的可靠性得到了实测值和有限元值的验证.研究结果表明:考虑剪切变形与层间滑移后,两跨连续钢-混组合梁跨中最大挠度计算值相对于初等梁理论增大37.4%,而同时考虑混凝土收缩徐变后其挠度计算值增大58%;简支钢-混组合梁考虑混凝土的收缩徐变后挠度计算值相对于初等梁理论增大1.55倍,可见混凝土的收缩徐变效应对钢-混组合梁的挠度影响较大.研究成果可为实际工程中钢-混组合梁在长期荷载作用下的挠度计算提供理论依据.  相似文献   

8.
为了研究节段预制波形钢腹板PC组合箱梁的力学性能,在考虑施工工艺和配束比影响的前提下,设计制作了3根缩尺模型试验梁进行受力性能试验研究.对比和分析了整体浇筑波形钢腹板PC组合梁和节段预制波形钢腹板PC组合梁力学性能的异同,提出了节段预制波形钢腹板PC组合箱梁抗弯承载力计算公式.结果表明:混凝土开裂后,节段预制梁刚度退化明显大于整浇梁,全体外配束节段预制梁刚度下降最为显著;节段预制梁钢腹板抗弯贡献明显大于整浇梁,接缝处截面尤为明显;相比于整浇梁,节段预制梁体外应力筋的应力增量较大,且增长速度快;与整体梁抗弯承载力计算公式相比,提出的节段预制波形钢腹板PC组合箱梁抗弯承载力计算公式的计算值与试验结果吻合更好.  相似文献   

9.
探究剪力连接程度对预应力钢—混凝土组合梁中混凝土和钢梁的界面的剪切滑移、截面刚度、挠度变形、极限强度等受力性能的影响 .试验选用栓钉剪力连接件 ,设计 3根不同剪力连接程度的预应力组合连续梁 ,采用跨中加载集中力 ,探究预应力组合梁静载受力全过程受力特性 .  相似文献   

10.
为准确计算波形钢腹板混凝土组合梁的挠度,推导了考虑剪切变形影响的波形钢腹板混凝土组合梁的挠曲线初参数方程.首先分析了波形钢腹板混凝土组合梁截面上剪应力的分布特点,得到了腹板剪应力的简化计算公式;然后推导了其挠曲线的初参数方程,提出了组合梁挠度的计算方法,进而对承受跨中集中荷载、两点对称荷载和均布荷载等3种典型荷载作用下的波形钢腹板混凝土组合梁的挠度进行分析,并将其结果与试验实测值、有限元结果进行比较,验证了文中理论方法的准确性和适用性;最后利用文中理论方法和有限元方法分析了跨高比和宽高比对波形钢腹板混凝土组合梁剪切变形的影响,并给出了波形钢腹板混凝土组合梁挠度计算是否需要考虑剪切变形影响的跨高比界限建议值.  相似文献   

11.
后结合预应力组合梁负弯矩区混凝土开裂性能试验   总被引:5,自引:3,他引:2  
为了研究后结合预应力技术改善混凝土桥面板组合梁在负弯矩作用下的受力性能,特别是混凝土的开裂性能,设计制作了2根组合梁(一根是常规混凝土桥面板组合梁,另一根是后结合预应力混凝土桥面板组合梁),进行了2根组合梁的静力试验.测试了在不同荷载作用下组合梁的变形、不同截面上构件的应变分布、混凝土的裂缝、钢与混凝土之间的相对滑移以及极限承载力等.试验结果表明:后结合预应力混凝土板连续组合梁的初始开裂荷载和正常使用状态的极限荷载分别是普通连续组合梁的3.87倍和5.38倍,说明采用后结合预应力混凝土桥面板能够大大提高组合梁负弯矩区混凝土的抗裂性能.  相似文献   

12.
连续组合梁弯矩重分布特征及其随荷载的变化规律   总被引:1,自引:0,他引:1  
为了对钢-混凝土连续组合梁进行受弯全过程描述,对3根两跨连续组合梁进行了静力加载试验,研究支座负弯矩区混凝土开裂后组合梁的内力重分布现象,结合试验现象分别确定连续组合梁正负弯矩区弯矩重分布系数随荷载的变化规律,并给出建议计算公式;在此基础上,考虑钢梁与混凝土板之间的相对滑移,采用共轭梁法得到连续组合梁的荷载-挠度和荷载-转角曲线.研究结果表明,连续组合梁弯矩调幅系数随荷载的增加而增加,且在正负弯矩区表现出相同的规律,可以采用弯矩重分布系数的建议计算公式来反映连续组合梁弹性弯矩和混凝土开裂后实际弯矩之间的重分布关系.  相似文献   

13.
针对预应力钢-混凝土连续组合梁负弯矩区混凝土板预应力效率低、钢腹板易发生局部屈曲等问题,提出了在负弯矩区梁段采用波形钢腹板代替平面钢腹板的混合设计方法.采用理论计算和有限元分析方法,对部分波形钢腹板预应力连续组合梁的受力和变形性能进行分析,并与传统的预应力连续组合梁对比.研究结果表明,混合设计方法充分利用波形钢腹板轴向刚度低、抗屈曲能力强的特点,显著提高连续组合梁负弯矩区混凝土板的预应力效率和开裂荷载,尤其适用于大、中跨径的预应力连续组合梁结构.  相似文献   

14.
在分析预应力钢-混凝土组合梁工作机理的基础上,提出了考虑混凝土翼缘滑移效应、预应力钢束张力增量以及二者相互作用的迭代-修正刚度法,用于计算预应力钢-混凝土组合梁在正常使用阶段的挠度,并编制了计算程序.计算结果与有限元分析结果吻合良好,对预应力钢-混凝土组合梁的研究、设计有一定的参考价值.  相似文献   

15.
大跨钢-混凝土连续组合箱梁桥双重组合作用   总被引:2,自引:0,他引:2  
为研究双重组合作用对大跨钢-混凝土连续组合箱梁桥受力性能的影响,通过对潍坊市跨济青高速立交桥现场静载试验研究,采用有限元方法对2种模型计算结果及现场实测结果进行比较分析,并对双重组合箱梁下层混凝土板的长度与主跨长度之比和混凝土板厚度与钢梁底板厚度之比2个变量进行参数分析。研究结果表明:双重组合箱梁下层混凝土板有效降低钢梁下翼缘的应力;考虑双重组合作用后,连续组合梁桥结构刚度及支点负弯矩略有增加,中跨跨中挠度及正弯矩略有减小,最大幅度不大于10%。  相似文献   

16.
进行体外预应力RPC箱梁模型两点对称受弯加载试验,研究了荷载-挠度曲线、截面应变、裂缝分布和破坏模式等问题,并对模型梁跨中正截面抗弯承载力进行了计算分析.结果表明,模型梁属于整体受弯破坏,采用预制节段拼装的施工方法是可行的;模型梁中混凝土对开裂弯矩的贡献明显大于同类普通混凝土梁,开裂时跨中受拉区边缘RPC应变约为普通混凝土的4~6倍;采用体外预应力提高了模型梁的开裂弯矩和增加了其延性,模型梁开裂弯矩为极限弯矩的55%;开裂时梁的跨中挠度仅为跨中极限挠度的20%;体外预应力RPC箱梁进行正截面承载力计算时应考虑RPC的受拉作用,并且可参照本文算法进行设计计算.  相似文献   

17.
开裂后预应力混凝土连续箱梁计算模型   总被引:5,自引:0,他引:5  
为了能够准确有效地模拟开裂后预应力钢筋箱梁的力学性能,提出了一种开裂后预应力钢筋和混凝土单元组合模型,箱梁梁体采用实体退化分层壳单元进行模拟.应用钢筋单元和混凝土单元之间的位移场关系,形成钢筋对混凝土单元的贡献,将预应力钢筋对结构的作用直接反映在单元模型内部,编制了配筋混凝土三维非线性有限元程序,并结合实桥破坏性试验数据进行了对比.结果表明:箱梁的实测变形及应变和理论数据吻合;中跨均布竖向荷载时箱梁开裂初期开裂区域的刚度折减约10%.  相似文献   

18.
为深入了解混凝土收缩徐变对钢-混凝土组合梁力学性能的影响,采用随时间变化的换算弹性模量法建立了钢-混凝土组合梁混凝土收缩徐变的增量微分模型,得到了组合梁内力、挠度和钢-混凝土界面滑移的微分控制方程.根据边界条件,给出了内力、变形及钢-混凝土界面滑移等各项力学性能指标的闭合解.为验证增量微分方法的正确性,对试验梁和算例梁进行了跨中挠度-时间曲线、沿梁高应变分布及梁端钢-混凝土界面滑移的计算分析.计算结果表明,所建立的增量微分法与试验值和其他计算方法的计算结果吻合较好,可以有效地预测钢-混凝土组合梁的长期力学性能.  相似文献   

19.
大跨径预应力混凝土箱梁的剪切变形分析   总被引:2,自引:0,他引:2  
为分析剪切变形对预应力混凝土箱梁挠度的影响,依据经典Timoshenko梁理论,参照已建大跨预应力混凝土箱梁的截面尺寸,简化选取等截面悬臂箱梁为分析对象建立了空间有限元模型.按不考虑剪切变形和考虑剪切变形两种情况计算了箱梁的挠度,分析了剪切变形的影响随箱梁高跨比的变化,并讨论了传统观点中的考虑剪切变形的高跨比门槛值在大跨径预应力混凝土箱梁挠度计算中的适用性.然后,建立了虎门大桥辅航道桥的施工阶段分析模型,模拟箱梁的实际悬臂施工过程,分析了剪切变形对箱梁挠度的影响规律,计算并探讨了箱梁的长期徐变挠度,进而推算了箱梁的剪切徐变挠度.分析结果表明,剪切徐变是造成箱梁持续下挠的原因之一.  相似文献   

20.
为研究后结合预应力组合梁桥的预压应力分布和负弯矩区抗裂性能,设计2根连续组合试验梁,其中一根为负弯矩区设计成全预应力混凝土板的后结合组合梁,另一根为无预应力的普通组合梁。测试了试验梁在张拉预应力筋和静力加载过程的受力性能,得到负弯矩区截面的应力状态和裂缝分布。试验表明:因钢梁和混凝土板不连接,预压应力由混凝土板承担且混凝土截面的预压应力沿着横向的分布不均匀。后结合预应力组合梁的初始开裂荷载和群钉孔外的开裂荷载分别是普通组合梁的3.1和5.0倍。后结合预应力组合梁抑制裂缝沿着横向贯穿混凝土板,提高了负弯矩区的抗裂性能。混凝土平均裂缝间距约等于横向钢筋间距。后结合预应力组合梁在开裂后的受力状态与普通组合梁类似。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号