首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
后结合预应力组合梁负弯矩区混凝土开裂性能试验   总被引:5,自引:3,他引:2  
为了研究后结合预应力技术改善混凝土桥面板组合梁在负弯矩作用下的受力性能,特别是混凝土的开裂性能,设计制作了2根组合梁(一根是常规混凝土桥面板组合梁,另一根是后结合预应力混凝土桥面板组合梁),进行了2根组合梁的静力试验.测试了在不同荷载作用下组合梁的变形、不同截面上构件的应变分布、混凝土的裂缝、钢与混凝土之间的相对滑移以及极限承载力等.试验结果表明:后结合预应力混凝土板连续组合梁的初始开裂荷载和正常使用状态的极限荷载分别是普通连续组合梁的3.87倍和5.38倍,说明采用后结合预应力混凝土桥面板能够大大提高组合梁负弯矩区混凝土的抗裂性能.  相似文献   

2.
为研究后结合预应力组合梁桥的预压应力分布和负弯矩区抗裂性能,设计2根连续组合试验梁,其中一根为负弯矩区设计成全预应力混凝土板的后结合组合梁,另一根为无预应力的普通组合梁。测试了试验梁在张拉预应力筋和静力加载过程的受力性能,得到负弯矩区截面的应力状态和裂缝分布。试验表明:因钢梁和混凝土板不连接,预压应力由混凝土板承担且混凝土截面的预压应力沿着横向的分布不均匀。后结合预应力组合梁的初始开裂荷载和群钉孔外的开裂荷载分别是普通组合梁的3.1和5.0倍。后结合预应力组合梁抑制裂缝沿着横向贯穿混凝土板,提高了负弯矩区的抗裂性能。混凝土平均裂缝间距约等于横向钢筋间距。后结合预应力组合梁在开裂后的受力状态与普通组合梁类似。  相似文献   

3.
针对预应力钢-混凝土连续组合梁负弯矩区混凝土板预应力效率低、钢腹板易发生局部屈曲等问题,提出了在负弯矩区梁段采用波形钢腹板代替平面钢腹板的混合设计方法.采用理论计算和有限元分析方法,对部分波形钢腹板预应力连续组合梁的受力和变形性能进行分析,并与传统的预应力连续组合梁对比.研究结果表明,混合设计方法充分利用波形钢腹板轴向刚度低、抗屈曲能力强的特点,显著提高连续组合梁负弯矩区混凝土板的预应力效率和开裂荷载,尤其适用于大、中跨径的预应力连续组合梁结构.  相似文献   

4.
以3片钢-混凝组合连续箱梁的变形试验为基础,其中RC1为普通组合梁,PC2和PC3为预应力组合梁,并结合虚功原理和换算截面法,提出了一种考虑自重、堆载、预应力和开裂影响的钢-混凝土组合梁变形计算方法.试验结果表明:预应力对钢-混凝土组合梁的变形影响较大,且有效预应力越大,跨中挠度越小;对于普通钢-混凝土组合连续箱梁,可通过考虑滑移效应的刚度折减法考虑混凝土板开裂对变形的影响;分析得到的理论挠度与实测挠度吻合较好.  相似文献   

5.
为探究正交异性钢-混凝土组合板负弯矩区的抗弯性能,对3块正交异性钢-混凝土组合板进行了抗弯静载试验和非线性数值分析,研究了不同因素对混凝土负弯矩开裂荷载和组合板整体抗弯极限承载力的影响.结果表明:正交异性钢-混凝土组合板呈现典型的弯曲破坏形态;当钢纤维体积分数为1%时,钢-混凝土组合板开裂弯矩的提升率最大,但钢纤维体积分数的改变对整体抗弯极限承载力影响较小;正交异性钢-混凝土组合板的开裂弯矩与正交异性钢板强度无关,极限弯矩则随钢板强度的增加而增大;增加混凝土板厚能提高组合板开裂弯矩和极限弯矩,当混凝土板厚度与正交异性钢板高度比值为0.8时,开裂弯矩的提升率最大.  相似文献   

6.
连续组合梁弯矩重分布特征及其随荷载的变化规律   总被引:1,自引:0,他引:1  
为了对钢-混凝土连续组合梁进行受弯全过程描述,对3根两跨连续组合梁进行了静力加载试验,研究支座负弯矩区混凝土开裂后组合梁的内力重分布现象,结合试验现象分别确定连续组合梁正负弯矩区弯矩重分布系数随荷载的变化规律,并给出建议计算公式;在此基础上,考虑钢梁与混凝土板之间的相对滑移,采用共轭梁法得到连续组合梁的荷载-挠度和荷载-转角曲线.研究结果表明,连续组合梁弯矩调幅系数随荷载的增加而增加,且在正负弯矩区表现出相同的规律,可以采用弯矩重分布系数的建议计算公式来反映连续组合梁弹性弯矩和混凝土开裂后实际弯矩之间的重分布关系.  相似文献   

7.
进行体外预应力RPC箱梁模型两点对称受弯加载试验,研究了荷载-挠度曲线、截面应变、裂缝分布和破坏模式等问题,并对模型梁跨中正截面抗弯承载力进行了计算分析.结果表明,模型梁属于整体受弯破坏,采用预制节段拼装的施工方法是可行的;模型梁中混凝土对开裂弯矩的贡献明显大于同类普通混凝土梁,开裂时跨中受拉区边缘RPC应变约为普通混凝土的4~6倍;采用体外预应力提高了模型梁的开裂弯矩和增加了其延性,模型梁开裂弯矩为极限弯矩的55%;开裂时梁的跨中挠度仅为跨中极限挠度的20%;体外预应力RPC箱梁进行正截面承载力计算时应考虑RPC的受拉作用,并且可参照本文算法进行设计计算.  相似文献   

8.
对于连续体系的钢.普通混凝土组合梁,处于负弯矩区的混凝土桥面板由于抗拉强度低,极易受拉开裂,导致组合梁的强度与耐久性下降.针对这一问题,提出了采用超高强度、高耐久性、高韧性且体积稳定性良好的活性粉末混凝土(RPC)材料代替普通组合梁中的混凝土桥面板,并根据RPC材料的本构关系及抗拉强度高的特点,确定以临界开裂状态作为这种新型钢,RPC组合梁的正截面破坏模式,推导了极限承载力计算公式,并对组合截面中RPC板与钢梁的高度比、宽度比、RPC板中的配筋率进行了参数影响分析.结果表明:钢.RPC组合梁与同条件的普通组合梁相比,在保证负弯矩区桥面板不开裂的情况下,极限承载力仍有所提高,并且结构的抗裂性、刚度和耐久性都可得到极大改善.  相似文献   

9.
研究了4根钢与高强混凝土组合梁的抗裂性能·试验表明,当荷载达到极限荷载的40%左右,微裂缝首先在加载点下的混凝土板底面出现,然后在加载点间逐渐增加,最后裂缝贯穿板顶;得到组合梁的混凝土板及型钢应变与荷载关系的曲线,分析钢与高强混凝土组合梁工作机理·利用弹性分析理论建立钢与高强混凝土组合梁开裂荷载的计算公式,计算结果与试验结果对比,二者吻合良好·给出了钢与高强混凝土组合梁裂缝宽度的计算公式·  相似文献   

10.
后结合预应力组合梁桥的混凝土预应力实效测试与分析   总被引:1,自引:1,他引:0  
为了研究后结合预应力法在组合结构连续梁桥中的应用效果,并与常规预应力组合梁的预应力实施情况进行比较,基于换算截面法分别推导了后结合和常规结合连续组合梁桥的中支点截面应力计算公式,结合国内首座大跨度后结合预应力组合连续梁桥开展实桥受力性能测试,测量负弯矩区中支点截面在各施工工况中的应力状态。测量结果表明:后结合预应力法不会在钢梁中产生压应力,有效提升了预应力在混凝土中的施加效率,后结合法产生在混凝土中的预压应力是常规预应力法的1.3倍。计算分析表明,采用后结合预应力法在跨径70 m以下连续组合梁中可以实现混凝土桥面板为全预应力状态,在跨径110 m以下连续组合梁中可以实现混凝土不开裂的A类预应力状态。  相似文献   

11.
大跨钢-混凝土连续组合箱梁桥双重组合作用   总被引:2,自引:0,他引:2  
为研究双重组合作用对大跨钢-混凝土连续组合箱梁桥受力性能的影响,通过对潍坊市跨济青高速立交桥现场静载试验研究,采用有限元方法对2种模型计算结果及现场实测结果进行比较分析,并对双重组合箱梁下层混凝土板的长度与主跨长度之比和混凝土板厚度与钢梁底板厚度之比2个变量进行参数分析。研究结果表明:双重组合箱梁下层混凝土板有效降低钢梁下翼缘的应力;考虑双重组合作用后,连续组合梁桥结构刚度及支点负弯矩略有增加,中跨跨中挠度及正弯矩略有减小,最大幅度不大于10%。  相似文献   

12.
通过模型试验研究了斜腹板钢箱组合连续梁中间支座处负弯矩区的非线性力学性能.测试了在不同荷载作用下沿纵向各部位的变形、不同截面的应变分布、混凝土板的裂缝分布、钢与混凝土之间的相对滑移以及整个结构的极限承载力等.试验表明,试件在加载初始阶段呈现线弹性,但由于混凝土裂缝较早出现,试件在大部分的加载过程中表现为非线性特征;此外,混凝土中钢筋配筋率对斜腹板钢箱组合梁受力的影响显著,配筋率较少时组合梁在混凝土开裂后刚度降低很快,并使得钢梁较早屈服,而配筋率适当的斜腹板钢箱组合梁表现出了较好的力学性能.试验结果与现行组合梁设计方法对比分析表明,规范规定采用简化折减刚度法计算斜腹板钢箱组合梁的整体变形是安全可行的,以混凝土裂缝宽度为0.2mm对应的承载能力作为斜腹板钢箱组合梁正常使用状态下的承载力具有较大的安全储备.  相似文献   

13.
为了检验所提出的开口U形肋组合桥面板在桥梁使用中的受力性能,并区分其与常规桥面板的受力性能,设计制作了3个不同桥面板试件,其中包括1个混凝土桥面板、1个正交异性钢桥面板、1个带U形肋组合桥面板.通过静力试验测试了不同桥面板在荷载作用下负弯矩区混凝土开裂情况、桥面板不同部位的结构应变和变形、极限承载力等.试验结果表明,在车轮荷载作用下,开口U形肋组合桥面板的应力远远低于正交异性钢桥面板的应力,避免了桥面板钢结构疲劳的发生;在重量比混凝土桥面板小57%的情况下,组合桥面板的承载力是混凝土桥面板的1.42倍;在用钢量约为钢桥面板1/2的情况下,二者的承载力相当.  相似文献   

14.
针对目前规范中缺少有关波形钢腹板组合连续梁桥有效翼缘宽度的相关规定,提出一种翼缘有效宽度计算方法,以某大跨度波形钢腹板预应力混凝土组合连续箱梁桥为背景,对其有效翼缘宽度计算进行初步研究,研究结果表明:在自重和集中荷载作用下,跨中混凝上内衬边缘的剪力滞效应显著,翼缘板的有效翼缘宽度系数分别达到0.87和0.7左右,其它部位剪力滞效应不明显;而预应力荷载作用下,波形钢腹板组合连续箱梁的各截面处的剪力滞效应均不明显,可以忽略不计,最后通过有限元计算结果与国内外规范对比发现,波形钢腹板箱梁跨中部分有效翼缘宽度与混凝土箱梁基本一致,设计计算时可参照普通混凝土箱梁;内衬边缘截面的剪力滞效应介于普通混凝土箱梁与钢箱梁之间,其有效翼缘宽度的计算也应介于二者之间。  相似文献   

15.
针对部分充填砼钢箱连续组合梁裂缝控制问题,开展超高性能混凝土(UHPC)翼板-部分充填砼钢箱连续组合梁抗裂性能研究,探讨该组合梁裂缝控制的新途径.通过3根部分充填砼钢箱连续组合梁试验,得到挠度、滑移和裂缝的开展特征.基于ABAQUS软件建立部分充填砼钢箱连续组合梁有限元分析模型,分析UHPC翼板部分充填砼钢箱连续组合梁关键参数对受力性能的影响.结果表明:负弯矩区采用UHPC翼板能显著提高组合梁抗裂性能;当负弯矩区UHPC翼板长为0.3倍跨径、厚度为1/3翼板总厚时,能满足裂缝控制要求且经济合理;与普通混凝土相比,高应变强化UHPC初裂荷载提升2.3倍,可视开裂荷载提升7.6倍.  相似文献   

16.
为简便估算恒载作用下钢-混凝土混合梁变截面连续梁合理钢箱梁长度,基于现有三弯矩方程推导了适用于变截面连续梁的改进三弯矩方程,建立了基于改进三弯矩方程的变截面连续梁弯矩简化计算方法,并采用MATLAB软件编制了计算程序。构建了不同跨径的变截面钢-混凝土混合连续梁桥标准结构,运用改进三弯矩方程分析了恒载作用下不同跨径钢-混凝土混合连续梁桥关键截面弯矩随钢箱梁段长度变化的规律,建立了主跨跨径150m~300m间钢-混凝土混合变截面连续梁桥钢箱梁段合理长度预估公式。不同跨径的钢-混凝土混合连续梁的墩顶负弯矩和跨中正弯矩均随钢箱梁段长度的增大而减小;主跨跨径150m、200m、250m、300m的变截面钢-混凝土混合连续梁桥钢箱梁段长度与主跨跨径的比例分别为0.35、0.40、0.40、0.45时,主跨跨中正弯矩减小趋势变缓;研究结果表明:基于改进三弯矩方程的变截面连续梁弯矩计算结果与有限元计算结果的偏差小于10%,可便捷且准确地计算恒载下变截面连续梁弯矩;预估公式计算得到的钢箱梁段合理长度与实桥使用的钢箱梁段长度之间的误差在12.5%以内,预估公式具有良好适用性。  相似文献   

17.
为充分发挥超高性能混凝土(UHPC)和普通钢筋混凝土(RC)材料在箱梁桥应用中的力学性能,开展了节段拼装预应力UHPC-RC组合箱梁的静载试验,研究其受力过程、破坏形态和裂缝开展情况。结果表明:组合箱梁经历了弹性变形、裂缝开展和结构破坏三个不同受力阶段;裂缝首先由梁跨中节段接缝张开逐步发展至顶板翼缘,梁底板和腹板均未见明显裂缝,开裂的受拉区应力主要由预应力筋承担,最大裂缝宽度随荷载增加分阶段线性增大,试验梁最终以RC顶板混凝土压溃破坏而失效;受力过程中,UHPC U型梁和RC顶板能够保持良好的协同工作;组合箱梁存在一定的剪力滞效应。  相似文献   

18.
T形肋正交异性组合桥面板力学性能   总被引:2,自引:1,他引:2  
为了检验所提出的T形肋正交异性组合桥面板在局部车轮荷载作用下的受力特性及这种桥面板在桥梁第二体系中的受力性能,并区分其与常规桥面板的受力性能,设计制作了4个不同桥面板试件,其中包括一个混凝土桥面板,一个正交异性钢桥面板,两个不同尺寸的T形肋正交异性组合桥面板.通过静力试验测试了不同桥面板在荷载作用下负弯矩区混凝土开裂情况、桥面板不同部位的结构应变和变形等.试验结果表明T形肋正交异性组合桥面板在车轮荷载作用下其局部应力水平显著低于正交异性钢桥面板,相同宽度的T形肋正交异性组合桥面板其极限抗弯承载力分别是混凝土桥面板和钢桥面板的2.30倍和1.57倍以上,表明T形肋正交异性组合桥面板具有较强的抗疲劳性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号