首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
一种EW接收机信号处理系统的设计与实现方法   总被引:3,自引:2,他引:3  
设计了一种基于FFT/IFFT、全FPGA实现、环形结构的电子战数字接收机信号处理系统,它由4片FPGA分别实现高速数据传输接口、FFT/IFFT运算及信号的时/频域检测。该系统可完成1~1024 K点的FFT运算及1~64 K点的IFFT运算,可检测出4个同时到达的脉冲雷达信号的脉冲描述字参数。系统中FPGA以分布式、多总线、并行、流水方式工作,当采用256 K点的FFT变换3、2 K点的IFFT变换时,检测出4个信号的典型用时约20 ms。  相似文献   

2.
基于时频域检测方法的信号处理系统设计与实现   总被引:4,自引:1,他引:3  
为解决宽带数字接收机所接收信号参数的高速提取,利用4片现场可编程阵列(FPGA)、分布式多总线并行流水方式完成信号的FFT运算、频域的载频信号参数的提取、IFFT运算及在时域中对脉冲参数的提取.利用有限状态机的方式完成了CPCI总线的PCI局部端接口时序编写及信号处理系统工作状态的控制和转换.用8片244芯片完成了用普通SRAM作类似双口RAM的设计.该项目已通过验收,可应用于实际工程.  相似文献   

3.
本文根据快速傅里叶变换(FFT)将时域信号变换到频域以及逆快速傅里叶变换(IFFT)将频域信号变换回时域的特点,对使用FFT将时域信号变换至频域,在频域上对信号进行相应处理,再使用IFFT变换回时域,获得所需处理效果的这一频域信号处理方式进行了深入研究。对使用FFT与IFFT组合完成诸如滤波,定量增益滤波,频段搬移,频谱复制等进行了针对性的分析以及测试,并提出了一种应用于音频处理领域的数字频域矩阵,可以大大方便音频信号在频域上的处理甚至能够直观地进行音频制作。所有的这些算法皆使用了音频进行验证,并且对每一次处理前后的音频的语谱图和频率谱进行了分析对比。结果显示,使用FFT与IFFT频域处理方式可以较好地完成多种信号处理功能,由于其原理简单,因此极大地方便了复杂信号的处理。  相似文献   

4.
System Generator for DSP是业内领先的高级系统级FPGA开发工具.本文基于该软件设计并实现了4通道GPS信号捕获模块,其中包括平均采样、本地C/A码、FFT/IFFT运算、复数乘法运算、扫频控制和结果返回等6个模块,并利用Xilinx的Viertx-5XC5VSX50T-FF665芯片对模块进行了硬件协同验证.测试结果表明:设计实现的捕获模块能够准确地捕获GPS信号,与利用硬件描述语言的方法相比,本文的方法大大缩短了开发周期.  相似文献   

5.
并行数据FFT/IFFT处理器的设计   总被引:1,自引:0,他引:1  
针对采用快速傅里叶变换(FFT)技术的多种应用场合,在分析基-2及基-4按时域抽取Cooley-Turkey算法特点的基础上,提出一种高性能FFT/IFFT处理器的硬件设计架构.通过改进基-4蝶形单元,可进行形如2的幂次方点数的FFT/IFFT运算.该结构能够并行地从4个存储器中读取蝶形运算所需操作数.仿真结果表明,该结构可以运用于对面积和速度要求较高的应用场合.  相似文献   

6.
直接序列扩频信号快速捕获   总被引:8,自引:0,他引:8  
提出一种新的基于频域并行搜捕法的改进型快捕电路结构.该结构利用设计复用技术实现FFT单元和IFFT单元的复用;通过软件计算本地伪码FFT,并将其结果存储在ROM中,使硬件规模大幅减少;采用并行设计提高系统的运算速度;采用块浮点算法提高动态范围和运算精度.整个快捕电路由一块FPGA XC2V3000-5实现,工作时钟为29 ns,精度为1/4码片情况下,伪码捕获仅需4.145 ms.仿真和测试结果验证了设计的正确性.  相似文献   

7.
本文对快速傅立叶变换,基本运算单元,蝶形运算的位数,8k点FFT实现,FFT模块实现IFFT等几方面阐述了基于OFDM技术的FFT的设计思路,给出了FFT实现的总体框架,并对存储器的控制,运算模块,FFT的地址,旋转因子,数据的锁存进行了硬件的设计,通过Matlab工具箱中的FFT函数进行了仿真.  相似文献   

8.
采用4K点复数FFT实现8K实数点FFT;数据存储单元采用双口乒乓RAM结构;采用级联结构流水线的设计方式,基4蝶形结构完成前6级的运算,双基2蝶形结构完成最后一级运算;使用块浮点溢出检测.实验结果表明,在时钟周期为8.74ns的正常状态下,采用FFT处理器实现8K实数点FFT仅需要35.799μs,达到了高速运算的目的.  相似文献   

9.
在基于现场可编程门阵列(field programmable gate array, FPGA)平台实现的实时光正交频分复用无源光网(optical orthogonal frequency division multiplexing-passive optical network, OOFDM-PON)系统中, 由于实时全并行快速傅里叶变换/快速傅里叶反变换(fast Fourier transform/inverse fast Fourier transform, FFT/IFFT)模块计算复杂度高, 成为实时OOFDM-PON系统设计的主要瓶颈之一. 构建OOFDM-PON发送与接收仿真平台, 通过联合优化OOFDM-PON发送端的IFFT与接收端FFT蝶形运算的旋转因子和输出字长来降低模块的系统逻辑资源占用率. 采用基于缩短字长界限范围的方法来减少最优化字长的搜索时间, 同时构建了实时OOFDM-PON系统的基于DIF-2的64点IFFT/FFT的字长优化映射表. 该映射表在离线OOFDM-PON平台上的验证结果与仿真结果之间的误差控制在0.5 dB,验证了该优化算法的正确性. 与Spiral设计方案相比, 该设计的基于上述映射表的FFT模块可以节约大约37.2%的逻辑资源.  相似文献   

10.
提出了在现场可编程门阵列(FPGA)上实现512点基-8快速傅里叶变换(FFT)算法的设计方案.方案采用了单芯片超高速的FFT处理器结构,满足了实时信号的处理要求.通过采用基-8算法、流水线结构以及32位的浮点数据,提高了FFT的运算速度并减少了FPGA内部的资源占用.本设计方案在100MHz的时钟下,完成了512点基-8 FFT运算需要,满足了高速数字信号处理的要求.  相似文献   

11.
基于FFT的车轮动平衡检测技术   总被引:1,自引:0,他引:1  
分析车轮动平衡检测的基本原理,设计信号检测的硬件电路.针对低信噪比振动信号的检测问题,在对采样数据进行预处理的基础上,采用基于FFT的数字信号处理方法,把时域离散振动信号转化到频域进行分析处理.根据测定的车轮动平衡转速,由频谱分析求解出与车轮不平衡量有关的振动信号的振幅和相位.实验结果表明,采用基于FFT的信号处理方法求解车轮不平衡量的大小和相位是有效而准确的.  相似文献   

12.
精确的时域三点法圆度误差分离技术   总被引:8,自引:0,他引:8  
三点法圆度误差分离技术(EST)是成熟的圆度形状和回转误差的分离方法,然而在具体实施操作中,必须进行正反两次的快速傅里叶变换(FFT和IFFT)。本文介绍一种新的方法;该方法同样基于误差分离技术的通则,但仅需在时域上直接对实测数据按简便代数式进行推即可进行分离虎,避免了FFT和IFFT操作,因而更为方便,实时性也更强。  相似文献   

13.
由于空域抗干扰算法形成零陷时会导致有用信号一定程度失真,提出了基于空频滤波的并行单星约束波束形成算法。针对宽带接收机的应用,在空频二维宽带处理器的模型下,将各阵元接收数据变换到频域;通过频域并行单星约束方程,保证信号带宽内每个频点上的信噪比,有效防止了传统算法对有用信号的衰减。最后,将每颗卫星信号逆变换到时域,便得到了干扰抑制之后的全部卫星信号。计算机仿真验证了理论分析的正确性和算法的稳健性。  相似文献   

14.
提出了一种基于按时间抽取(DIT)离散哈特莱变换(DHT)的快速傅里叶变换(FFT)结构,运算过程均为实数操作.与复数FFT相比,该结构可以节省1/2的RAM并且需要更少的乘法器和加法器.这种FFT/IFFT结构适用于ADSL/VDSL、DAB/DVB、WLAN及其他OFDM/DMT应用和实数FFT应用中.  相似文献   

15.
在时域并行FFT捕获算法的基础上,采用在频率搜索维上基于能量搜索的策略对伽利略E1-Boc信号的捕获进行了仿真和实验分析.在伽利略仿真信号的码延迟时间为1.8 ms,多普勒频移为600 Hz,导航电文调制速率为250 bit/s,数值为±1的情况下分别从捕获率、ROC操作特性曲线以及计算复杂性3方面对能量捕获算法性能进行了验证,并与AV, Zero-Padding两种算法进行了比较.结果表明,能量捕获算法在载噪比为32 dB/Hz的室内微弱信号环境下,捕获率能达到90%,且ROC操作特性曲线和计算复杂性等综合性能均优于AV,Zero-Padding两种算法,适用于数据跳变发生频繁的微弱伽利略E1-BOC信号的捕获.  相似文献   

16.
该文研究应用FFT在频域与小波变换在时域的优势,设计搭建了基_4 FFT与Daub4小波变换结合的嵌入式电能质量检测系统。该系统利用小波变换检测电压骤升、骤降等暂态问题,使用FFT分析稳态下电信号谐波。为验证系统的实际检测能力,分别对稳态、电压骤降、电压暂态干扰三种状况进行了实时监测测试和Matlab软件分析,结果表明:该嵌入式电能质量检测系统在稳态时,检测基波幅值的误差为0.3%,满足公用电网GB/T 14549—93对谐波测量仪器的A级标准;同时,在电压骤降、电压暂态干扰状态下也能准确检测到电信号的突变时间,实际系统检测和软件仿真结果误差在1.6 ms内,满足实时性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号