首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
Smith预估器对模型的依赖性制约了它在实际中的应用,文中提出一种改进型Smith预估器,能在线地跟踪时滞不确定对象的时滞时间常数的变化引起的系统输出的变化,调节模型输出使得闭环系统稳定,而且,模型中不含有时滞环节,控制器只有一个调节参,易于实现;对一大惯性、大时滞系统的仿真结果表明,改进算法较好地解决了Smith预估器的稳定性对模型时滞时常数的依赖性问题,具有广泛的应用前景。  相似文献   

2.
针对网络中存在的时滞给主动队列管理算法性能带来的不利影响,将Smith预估补偿器与达林算法相结合,提出了一种预测PI控制算法,既利用Smith预估器克服了大时滞给系统性能带来的影响,也减少了控制器参数整定数量.利用控制理论分析了该算法中Smith预估模型与实际对象模型分别存在增益、时间常数和时延失配情况下系统的鲁棒稳定性,并分别给出了保持系统稳定的失配参数条件.理论分析表明,通过适当选择期望闭环传递函数时间常数和预估模型参数,可以使系统获得较强鲁棒性和较快响应速度.仿真试验验证了理论分析的正确性.  相似文献   

3.
为解决气动系统在控制过程中出现的时滞性、非线性性和外部干扰等问题,提出了一种基于时滞补偿的模糊比例-积分-微分(proportion integration differentiation, PID)控制的策略。首先,分析气动系统的工作原理,建立气动系统的机理模型。其次,针对气动系统存在的时滞特性,在Smith预估器的结构中引入干扰观测器,并使用改进的Smith预估器来补偿系统的纯滞后环节。最后,为提高位置控制精度,设计了具有自整定能力的模糊PID控制器。仿真结果表明,改进的Smith预估器与模糊PID控制相结合的策略能够保证系统的稳定输出,提高系统的抗干扰能力和鲁棒性。  相似文献   

4.
以时滞大惯性加热炉为被控对象,通过试验建模得到对象模型参数,应用Siemens S7-300自整定调节器和结构控制语言SCL构建Smith预估控制系统.研究常规单回路系统、常规Smith预估系统以及增益自适应Smith预估系统在时滞大惯性对象情况下的随动响应性能.实际运行表明,增益自适应Smith预估系统控制质量明显提高,尤其在对象参数与预估器参数失配后,能够有效地改善系统的随动响应和鲁棒性.  相似文献   

5.
一种改进的自适应Smith预估器   总被引:1,自引:0,他引:1  
传统的Smith预估器是基于被控对象的精确数学模型而设计的,对于缺乏精确数学模型且参数时变的大时滞系统,常规的Smith预估控制规则就很难获得令人满意的控制效果。文章在一种增益自适应Smith预估补偿器的基础上,利用信号的相关性分析技术中的平均幅度差函数,实时调整预估器的滞后时间;仿真表明,该算法具有较好的性能,加强了Smith预估器抗干扰能力,改善了参数时变的大时滞系统的鲁棒性。  相似文献   

6.
针对于燥系统具有不确定特性、大滞后的特点,提出了一种将模糊PID与模糊Smith预估器相结合的控制策略,实现了PID参数和Smith预估器滤波时间常数的在线整定,获得了比模糊PID控制、模糊Smith预估器控制更好的控制效果。仿真结果也证明了这一点.  相似文献   

7.
提出一种基于Smith预估器的H∞鲁棒控制器的设计方法.该方法用Smith预估器巧妙地将时滞过程的鲁棒性能问题转化为无时滞过程的鲁棒性能问题,简化了分析和综合,避免了时滞的分式近似.理论分析及仿真结果表明该方法有效地克服了时滞,使系统的鲁棒性能得到了明显改善.  相似文献   

8.
提出一种基于Smith预估器的H∞ 鲁棒控制器的设计方法 .该方法用Smith预估器巧妙地将时滞过程的鲁棒性能问题转化为无时滞过程的鲁棒性能问题 ,简化了分析和综合 ,避免了时滞的分式近似 .理论分析及仿真结果表明该方法有效地克服了时滞 ,使系统的鲁棒性能得到了明显改善 .  相似文献   

9.
由于传统Smith预估补偿控制对采用电动静液压作动器(Electro Hydrostatic Actuator,EHA)半主动悬架只能进行临界时滞时间的补偿,设计了一种自适应Smith预估时变时滞补偿控制器。通过计算含时滞半主动悬架系统的临界时滞,结合小时滞下悬架系统不会发生失稳的条件,得到了含时滞EHA半主动悬架时滞的时变特性,并验证了该时滞补偿控制器对时变时滞补偿的有效性。利用模糊控制算法求取了含时滞EHA悬架的半主动控制力,并进行了时变时滞补偿。建立了含自适应Smith预估时变时滞补偿控制的EHA半主动悬架仿真模型,并进行了对比仿真分析。结果表明,当时滞为0.05 s和0.1 s时,自适应Smith预估时变时滞补偿控制下的悬架簧载质量加速度和轮胎动载荷的均方根值分别改善了14.6%,5.5%和29.5%,15.5%;相比于传统Smith预估时滞补偿控制,时滞补偿效果分别提高了39.7%,41%和18%,55%.  相似文献   

10.
烷氧基化装置温度控制系统具有大时滞特性,温度高效控制困难.建立系统数学模型;提出内环为PD控制器,外环为Smith预估器与线性自抗扰控制相结合的控制策略,以解决时滞系统采用自抗扰控制时扩张状态观测器输入信号不同步及Smith预估器抗扰能力差的问题;设计线性自抗扰控制器;从不同点加入扰动进行数值仿真实验,仿真结果证明了所提出方法的有效性.  相似文献   

11.
在大多数自动化控制过程中,被控对象具有不同程度的延迟,不能及时反映系统所受的扰动.这种情况对系统的控制极为不利,会产生较大的超调,降低系统的稳定性.针对纯滞后系统的特点,对这类系统的补偿方案进行了详细介绍:PID算法、Smith预估补偿算法和Dahlin控制算法.同时以Smith预估补偿算法为例,在不同的参数下,利用MATLAB的Simulink工具箱对Smith预估控制系统的特性进行仿真,并分析其稳定性条件.结果表明,在模型匹配的情况下,此种算法具有很好的稳定性和鲁棒性,可以明显的加速调节过程,提高控制质量.  相似文献   

12.
基于Smith预估控制和参数最优化理论,提出了可变纯滞后时变系统的模型参考自适应预估控制(MRAPC)。MRAPC由自适应预估器,自适应过程模型,自适应机构及常规控制器所组成。它大大地减少了系统中时变参数和可变纯滞后的影响,控制性能明显地强于Smith预估控制。其后给出的仿真结果证实了MRAPC的有效性。  相似文献   

13.
基于神经网络的具有Smith预估器的PID控制   总被引:2,自引:0,他引:2  
利用神经网络对具有纯滞后的被控对象建立了具有Smith预估器的PID控制系统。仿真表明,这种控制结构对具有不确定性和纯滞后的复杂系统,有良好的控制结果。  相似文献   

14.
基于Elman网络补偿模型的Smith预测控制   总被引:1,自引:0,他引:1  
研究基于Elman网络补偿模型的Smith预测控制问题.采用互补建模方法对被控对象进行建模,其中机理模型反映被控对象的主要工作规律和运行趋势,但不可避免地存在一定的模型误差;通过Elman网络拟合机理模型的模拟误差,并对其进行补偿.实验结果表明,基于Elman网络补偿模型的Smith预测控制充分利用了神经网络的非线性拟合能力,只要对纯滞后环节精确建模,就可以完全抵消该环节对控制品质及系统稳定性的不利影响.该方法使得Smith预测控制可以用于模型不易精确确定的系统.  相似文献   

15.
以不确定大时滞过程为研究对象 ,对常规的 Smith预估控制系统进行变形 ,然后用灵敏度最小原则设计 H∞ 控制器 ,实现了对不确定大时滞过程的鲁棒性控制 .理论分析和仿真结果表明 ,这种新型控制方法能消除大时滞带来的不良影响 ,且鲁棒性强 ,能够有效抑制干扰和模型不确定性 ,只用一个可调参数就能有效协调系统的鲁棒性能和标称性能 .  相似文献   

16.
为解决一类含有时滞的分数阶系统控制问题, 提出了一种 Smith 预估分数阶 PI(Proportion Integral)控制策略, 在不消除分数阶系统中的时滞项的情况下, 实现了时滞系统的稳定控制。 通过对分数阶时滞系统进行特性分析, Smith 预估控制能有效克服时滞对分数阶控制系统的不利影响, 并给出了分数阶 PI 控制器参数整定的简单规则, 具有一定的实际应用价值。 同时分析了该分数阶系统的阶次对系统收敛时间的影响, 最后仿真验证了结论的正确性。  相似文献   

17.
提出了模型不确定时史密斯预估器的鲁棒PID调整.引入了等效增益脉冲时间延迟(EGPTD)的概念,并用于史密斯预估器的PID调整中的鲁棒稳定性控制.由于二阶脉冲时间延迟(SOPTD)系统广泛地用于描述工业过程,特别地开发了鲁棒调整在该系统中的应用.推荐的调整方法可以处理模型的所有参数同时不确定的情况.另一个重要的特点是本方法可以利用有效的PID调整规律.提供的仿真结果表明了本方法的正确性.  相似文献   

18.
延迟时间未知的时延系统神经网络补偿控制   总被引:21,自引:0,他引:21  
提出了延迟系统及延迟时间参数的神经网络辨识方法。改变神经网络输入样本区间,利用网络输出期望值与输出实际值之间的误差平方和产生的突变,可以辨识出非线性对象的延迟时间。将神经网络大延迟系统的辨识与基于模型补偿的控制策略相结合,可以用于具有变化参数或者不确定性延迟时间的大延迟系统的控制。仿真结果表明这种神经网络模型补偿延迟系统控制具有很好的控制效果,它是大延迟控制中克服延迟时间变化的很有希望的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号