首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
高速开关阀在高频PWM控制下的比例功能   总被引:6,自引:0,他引:6  
在现代汽车制动系统(如制动防抱死系统(ABS)、电子稳定程序(ESP))中,为了控制制动压力,一般采用电子控制单元(ECU)控制的二位二通的高速开关电磁阀来实现制动轮缸的压力增压、保压和减压的控制。由于传统高速开关阀只能实现开或关两种状态,为了提高系统的控制精度,对高速开关阀的开关比例功能也要求越来越高。该文在MATLAB的Simulink中建立了高速开关阀的脉冲宽度调制(PWM)控制仿真模型,研究了在2~4 kHz的调制频率下,通过改变PWM控制下的占空比,来实现高速开关阀的比例开关功能。并进一步分析了不同参数对高速开关阀PWM控制的比例开关功能的影响。通过本研究,拓宽了高速开关阀的功能应用范围,达到了精密控制制动压力的效果,对汽车ABS和ESP中的高速开关阀的控制提供了参考,从而使得制动压力的增加过程能够更加平稳有度。  相似文献   

2.
为了进一步提高混合动力汽车电液复合制动系统协调性能和制动能量回收率,以一款新型双电机插电式混合动力汽车(PHEV)为研究对象,针对电机制动系统和液压制动系统工作特性的不同,提出符合其电液复合制动系统耦合工作特性的制动能量分配与控制策略。在保证制动安全性的前提下,以最大程度利用电机再生制动力为目标,建立电机损耗模型及可动态控制压力的液压制动系统模型,模拟实际电液复合制动系统的工作特性,通过控制电机制动系统电流实现损耗最小,并且调节速比实现电机与无级变速器(CVT)联合工作效率最优。利用比例-积分-微分(PID)控制调节液压制动系统高速开关阀,实现轮缸压力动态协调控制。制定基于阈值实时优化的制动力分配策略及基于制动强度修正的协调控制策略,利用MATLAB/Simulink和AMESim仿真平台对电机、液压制动系统及传动系统建立整车动力学模型,通过对连续制动及制动突变等制动工况进行联合仿真试验验证该控制策略的性能。研究结果表明:该控制策略可充分发挥双电机制动回收系统的优点,大幅提高制动能量回收率,有效兼顾汽车的制动安全性和平顺性,减小制动力波动;初速度为60 km/h,制动强度由0.6突变至0.3时,最大冲击度由93.36下降为17.52 m/s~3,满足汽车平顺性的要求;在城市车辆排放测试(UDDS)循环工况下,实际能量回收功率最高可增加0.32 kW。  相似文献   

3.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

4.
提出一种基于制动强度的制动力分配策略。该策略可以使混合动力汽车在制动的过程中,既能保证制动的稳定性,又能最大限度地回收能量。首先在汽车制动动力学和相关法规的基础上,保证汽车稳定的前提下,确定了前、后轴制动力的分配区域;其次,在考虑电机特性等多种约束条件下,根据制动强度确定出最佳的制动力分配曲线,以使能量回收的效率最高;最后,将所提出的算法运用在MATLAB的电动汽车仿真软件中,在4种典型城市公路循环工况下进行了仿真;并且将实验结果与电动汽车仿真软件中原有的算法进行了比较。结果显示,该控制策略在保证汽车制动稳定的前提下,能够使汽车在制动过程中回收更多的能量。  相似文献   

5.
一种基于制动强度的制动力分配策略被提出,该策略可以使混合动力汽车在制动的过程中既能保证制动的稳定性又能最大限度的回收能量。首先在汽车制动动力学和相关法规的基础上,保证汽车稳定的前提下,确定了前、后轴制动力的分配区域。其次,在考虑电机特性等多种约束条件下,根据制动强度确定出最佳的制动力分配曲线,以使能量回收的效率最高。最后,将所提出的算法运用在MATLAB的电动汽车仿真软件中,在四种典型城市公路循环工况下进行了仿真,并且将实验结果与电动汽车仿真软件中原有的算法进行了比较,结果显示,该控制策略在保证汽车制动稳定的前提下,能够使汽车在制动过程中回收更多的能量。  相似文献   

6.
基于高速开关阀控制的液压制动伺服系统研制   总被引:3,自引:1,他引:2  
研制了一种基于高速开关阀对混合动力车辆传动实验台制动系统实施压力控制的系统.制动器制动性能取决于对制动目标压力的响应特性.分析了高速开关阀的开关特性和制动液压缸的压力变化特性,并针对高速开关阀的开启响应滞后和液压缸压力变化的的非线线的特点,设计了PI控制器.应用dSPACE公司开发的AutoBox快速控制原型系统编制了系统的控制算法和模型,并进行了实验,实验结果表明,液压制动伺服系统能够满足制动性能的要求.  相似文献   

7.
依ECE法规进行汽车制动力分配新方法   总被引:10,自引:0,他引:10  
根据ECE法规要求得到了汽车制动力分配系数β与各种路面上制动强度的关系,提出了用制动力分配系数控制曲线进行制动力分配的新方法,即根据质心位置和重心高度可方便地得到满足ECE法规制动力分配系数。分析了结构参数对汽车制动力分配的影响,分析表明:随着重心高度增加,满足ECE法规的制动力分配范围减小;而轴荷分配的变化对制动力分配影响不大。给出了不满足ECE制动法规时制动力分配的建议。  相似文献   

8.
通过建立半挂汽车列车制动时的力学模型,讨论了半挂汽车列车制动过程各轴载荷的变化规律,得出了半挂汽车列车较理想的制动器制动力分配曲线的参数方程.在此基础上,分析了具有固定分配比值的半挂汽车列车制动时的利用附着系数以及怎样利用各轴的利用附着系数来优化选择半挂汽车列车制动器制动力的分配系数.  相似文献   

9.
针对现行电动汽车再生制动的不足,提出一种新型电磁机械耦合再生制动系统(electromagnetic-mechanical coupled regenerative braking system,EMCB),并对其进行动力学分析和耦合机理研究;基于EMCB系统和理想制动力分配曲线提出一种制动力分配策略,构建EMCB系统模型和控制策略仿真系统,应用Car SimSimulink联合仿真平台,以有、无滑移率控制的紧急制动工况为例,对制动能回收、制动稳定性和制动舒适性等进行对比研究和验证分析。研究结果表明,所提出的制动力分配策略不仅实现中低制动强度下实际制动力分配曲线与理想I曲线高度吻合,还满足高制动强度下制动效能的需求,即保证了制动稳定性和制动舒适性,又提高了能量回收效率,有效增加了电动汽车的续驶里程,为进一步获得良好的防抱死制动系统(ABS)、电子制动力分配系统(EBD)、电子稳定系统(ESP)等控制性能奠定了基础。  相似文献   

10.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

11.
详细分析了非满载液罐车在水平路面上直线行驶过程中制动时,理想的前后轮制动力分配曲线,并提出了一些改进建议.  相似文献   

12.
针对传统线控制动系统缺乏自适应识别车辆特征信息和硬件模块连接数量的问题,本文研究一种融合自识别功能的线控制动系统,包括多个压力调节阀、轮速传感器、转向角传感器和中央控制单元,通过中央控制单元自动识别制动系统硬件部件的连接状态,使得制动系统能够选择适宜的工作模式,将车辆以40km/h的速度分别在附着率为0.8和0.4的路面行驶,完成检测识别挂车是否连接在牵引车上、识别传动轴上轮速传感器和压力调节模块和识别转向角传感器和横摆率传感器的实车测试。结果表明,当车辆采取紧急制动时,带有自识别功能的线控制动系统利用中央控制单元能够通过CAN总线检测到轮速传感器、压力调节模块、转向角传感器等硬件的连接状态,并将CAN通讯信号反馈到制动总阀,为车辆提供有效的制动力,并且系统在高附着路面的调节能力优于在低附着路面的表现。  相似文献   

13.
应用力矩平衡原理,分析了装有ABS的汽车在水平行驶、下坡、上坡时紧急制动的受力状况。分析了在这3种情况下地面对汽车前、后轮的压力,以及前、后轮制动器的制动力。并由此得出汽车在这3种情况下的理想的前、后制动器制动力关系式。  相似文献   

14.
为了研究特大型电动轮矿用自卸车下坡联合制动时的制动特性,分析联合制动时电阻栅能耗制动及液压多片湿盘式制动器制动功率的分配,以湘电重装满载整车重量达520t的自卸车为研究对象,建立了自卸车电阻栅能耗制动及液压多片湿盘式制动器联合制动系统动力学模型,利用Mtlab/simulink对该自卸车在不同下坡坡道上的紧急联合制动进行了数值分析计算,获得制动特性曲线.结果表明:初速度为30 km/h时,在不高于10%的坡度下紧急制动距离不超过21 m;平均比制动力在不同坡道基本保持不变,最高值为0.35左右;后轮比制动力大于前轮比制动力,侧滑、跑偏的可能性大于转向失控的可能性;当满载重心向后轴移动时,平均比制动力保持不变,前后轮比制动力差距减小,可有效利用地面粘着力;电阻栅能耗制动与液压多片湿盘式制动器的平均制动功率之比约为2:3.研究表明该联合制动系统可有效减轻主制动器负荷,提高制动效能,延长主制动器使用寿命.  相似文献   

15.
摩托车液压制动防抱死控制参数计算   总被引:4,自引:0,他引:4  
为了提高中,低档摩托车的制动性能,目前亟待研究开发一种经济实用,便于安装的防抱死控制装置。该文分析了摩托车液压制动防抱死控制原理,提出了针对路面条件,通过调节装置控制制动油缸压力,使车轮滑移率处于理想的范围内以实现防抱死制动。  相似文献   

16.
李刚  杨志 《科学技术与工程》2020,20(4):1663-1668
伴随汽车的电子化与智能化发展,针对四轮独驱电动汽车驱/制动力独立可控的优势,提出了一种考虑驾驶员制动特性的四轮独驱电动汽车复合制动控制策略。通过应用车辆动力学仿真软件CarSim与MATLAB/Simulink软件建立车体模型、电机模型、电池模型和能量回收控制模型,并合理分配前后轴制动力矩和液压制动与电机制动的比例,通过两种不同循环实验工况对能量回收控制方法进行仿真实验验证。实验结果表明:所提出的复合制动控制策略可以有效分配汽车前后轴制动力矩,保证汽车制动稳定性,并获得较高的能量回收率,提高汽车行驶里程。  相似文献   

17.
汽车防抱制动系统制动时的车速计算   总被引:16,自引:2,他引:16  
汽车ABS系统中,滑移率是主要控制参数,制动时车速是确定车轮滑移率的基础。通过轮胎制动模型,对于有稳定压力源ABS的系统,在结构和调压方式确定时,能建立制动轮缸的等效压力函数,通过车轮地面制动力和整车动力学方程求解整车的平均减速度和车速。  相似文献   

18.
摩托车防抱制动控制器的研制与试验   总被引:1,自引:0,他引:1  
本文介绍实用新型专利“摩托车防抱死控制器”的研究开发过程.提出了针对路面条件通过控制器调节制动压力输出特性使车轮滑移率处于理想的范围,以实现防抱死制动的原理;根据已导出的摩托车液压盘式制动防抱死控制参数计算公式,进行了防抱死控制器的功能原理设计、结构设计、制造和性能测试.跑车试验取得了较好的效果.该控制器构思新颖、价格性能比好,适合中、低档摩托车改善提高制动性能的要求,具有广阔的应用前景和推广价值.  相似文献   

19.
矿用汽车制动时方向稳定性及制动力分配   总被引:1,自引:0,他引:1  
分析矿用汽车制动时,前轮抑死或后轮抑殆以及前后轮同步抱死三种工况下,车辆的转向能力和稳定性;并在此基础上考虑附着系数的作用和阻力的作用后,系统地定量讨论了矿用汽车制动力的分配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号