首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以本实验室制备的表面富含羧基的磁性高分子微球作为免疫检测固相载体,将磁性微球与抗体进行偶联,通过优化偶联条件制备得到免疫磁珠,建立基于磁性微球的化学发光免疫检测方法,用来检测HCG.并研究影响化学发光强度的各项因素,绘制了HCG标准曲线,在HCG抗原浓度为0.5~300IU/L范围内线性关系良好,相关系数R=0.990.  相似文献   

2.
以纳米级铁氧体作为磁核,以聚乙烯醇(PVA)为分散剂、过氧化苯甲酰(BPO)为引发剂、二乙烯基苯(DVB)为交联剂,并加入共聚合单体苯乙烯(St)、甲基丙烯酸甲酯(MMA)、 甲基丙烯酸(MAA),采用悬浮聚合法制备亲水性能好的磁性高分子微球.采用光学显微镜测试其表面形貌,结果显示制备的磁性微球具有良好的分散性,表面光滑;振动样品磁力计测试磁性能,结果表明微球具有超顺磁性,磁响应性高;接触角测试仪表征了微球表面的亲水性能,实验结果得出MAA加入量占单体总体积的3/8时,微球与水的接触角可达69°.  相似文献   

3.
磁性高分子微球是利用微胶囊化方法,使有机高分子与无机磁性粒子Fe3O4结合起来形成的具有磁响应性的高分子微球.对以聚(甲基丙烯酸-co-丙烯酰胺)(P(MAA-co-AAm))为高分子基材、四氧化三体(Fe3O4)为磁性内核通过化学方法制备的 P(MAA-co-AAm)/Fe3O4磁性复合微球性能进行了表征.扫描电镜(SEM)照片显示,复合微球呈现明显的交联结构特征,分散性较好.将茶碱负载到P(MAA-co-AAm)/Fe3O4磁性交联复合微球上,对其药物释放情况研究表明,在pH值为7.4的碱性缓冲溶液及去离子水中茶碱释放速率较快,在8 h左右达到释放平衡; 而在pH值为1.4的酸性缓冲溶液中,茶碱的释放缓慢,表明P(MAA-co-AAm)/Fe3O4磁性复合微球有很好的pH值响应性.因此,载药交联微球在酸性胃液和碱性肠道液中能够自动调节药物释放速率,具有靶向药物释放效果,P(MAA-co-AAm)/Fe3O4交联磁性微球可做为靶向药物载体.  相似文献   

4.
利用改进的化学共沉淀法制备了具有良好分散性和磁响应的磁流体.用聚乙二醇作为分散剂,以苯乙烯(St)和甲基丙烯酸-2-羟基乙酯(HEMA)为共聚单体,合成了含羟基的具有核壳结构的磁性高分子微球.采用XRD,TEM,SEM,IR,TG-IR,DSC等方法对样品进行了表征.结果表明:制备的磁流体为Fe3O4单相,粒径为10-20 nm,微球的粒径大小约为1-5μm,微球上存在羟基.  相似文献   

5.
以1-乙基-3-(3-二甲基氮丙基)-碳化二亚胺(EDC)为偶联剂,将氨基标记的寡核苷酸探针(包含捕获探针、检测偶联效率的Tag序列以及间隔臂三部分)固定在羧基末端荧光微球表面.以生物素标记的cTag与微球表面探针杂交,再加入荧光物质PE标记的亲和素(SA-PE),通过Luminex-100TM荧光微球检测仪对荧光微球表面探针的偶联效果进行了检测.结果表明:不同间隔臂的氨基标记寡核苷酸探针具有不同的偶联效率,C12偶联效率优于C6-5T,C6-5T优于C6;且平均荧光强度(MFI)值最高可达3000以上,为后续核酸杂交检测建立了基础.  相似文献   

6.
报道了一种液相芯片的微球敏感元件载体的制备方法.利用分散聚合法,以苯乙烯(St)为聚合单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯吡咯烷酮(PVP)为稳定剂,乙醇和水作为分散介质,合成了微米级单分散性聚苯乙烯微球,详细探讨了单体浓度、引发剂、稳定剂的用量对微球的粒径及单分散性的影响,并对微球的表面形貌进行了表征.结果表明,制备的聚苯乙烯微球作为液相芯片的敏感元件载体,具有良好的单分散性,粒径约2.2 μm,并且表面光滑致密,适合下一步在其表面引入羧基、氨基等功能基团以进行表面化学与生物活化,从而制成液相芯片的敏感元件.  相似文献   

7.
通过模板法制备中空SiO2/Fe3O4磁性微球,采用分散聚合法制备了大尺寸的聚苯乙烯微球作为模板,以界面沉积法制备了Fe3O4/PS复合粒子,溶胶凝胶法制备SiO2/Fe3O4/PS微球;经过高温煅烧使模板聚苯乙烯分解,得到中空磁性微球.通过透射电子显微镜、红外光谱仪、扫描电子显微镜、X射线衍射仪、震荡样品磁强计、物理吸附仪等仪器对中空SiO2/Fe3O4磁性微球进行了形貌和性能表征.结果表明:所制备的中空SiO2/Fe3O4磁性微球尺寸在700nm左右,大小均匀,有良好的分散性,并且中空磁性微球表面有孔,其孔径在16nm左右,具有较大的比表面积和孔容量.  相似文献   

8.
为了制备具有纳米多孔结构的磁性复合微球,采用正硅酸四乙酯(TEOS)和金属氯盐分别作为SiO2和铁氧体的前驱体,通过溶胶凝胶法制备将Fe3O4纳米颗粒分散于SiO2基体中的Fe3O4/SiO2磁性纳米复合微球,并用超临界干燥法对其进行干燥。利用X线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)和振动试样磁场计(VSM)等分析测试手段对合成的材料进行性能表征。结果表明:复合粒子包覆完好、性能优良、分散性良好,制备颗粒的粒径为30 nm,比饱和磁化强度为84.09 A.m2/kg。  相似文献   

9.
聚苯乙烯/甲基丙烯酸磁性微球的制备与表征   总被引:4,自引:0,他引:4  
以纳米级氧化铁为磁性载体,以苯乙烯和甲基丙烯酸为单体,用微乳液法制备了P(St-MAA)磁性微球.光学显微镜照片和磁滞回线显示微球在水中分散均匀,表现出超顺磁性;红外谱说明微球表面含有羧基基团;通过电导率仪测试,计算出了微球表面羧基含量,并发现其随甲基丙烯酸单体含量的增加呈非线性增加.荧光显微镜观察,显示微球和亲与素连接很好.  相似文献   

10.
采用分散聚合法以苯乙烯(St)为单体、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为分散剂、乙醇和水的混合液为分散介质合成了聚苯乙烯微球,再通过硝化反应与还原反应制成了粒径均匀,稳定性好的氨基聚苯乙烯微球.通过扫描电子显微镜、激光粒径分析仪对微球的外观形貌、单分散性分别进行表征,并用电导滴定法测定了微球表面氨基含量.结果表明,所合成的氨基聚苯乙烯微球粒径在2 μm左右,具有良好的单分散性且氨基含量较高.  相似文献   

11.
为将脂肪酶固定化,以提高酶的稳定性、使酶可以重复利用和降低生产成本,采用化学共沉淀法制备Fe,0。,以透射电镜、x-射线粉末衍射和红外光谱对所得产品进行表征,并且采用硅烷.戊二醛偶联法和壳聚糖包埋法分别将脂肪酶固定于磁球表面,再以生物拆分(R,s)一1一苯乙醇为模型考察了各种因素对转酯反应的影响。结果表明:化学共沉淀法制备Fe304为粒径小于20nm的磁性纳米粒子;壳聚糖包埋法操作简单、酶载量大;扫描电镜分析揭示固定酶的磁球表面含有大量微孔结构。在最佳条件下,1一苯乙醇的转化率达44.3%,对映体过量值eep为99%,酶的半衰期为121h。反应完成后,施加外磁场可使酶与反应体系迅速分离,固定化酶重复使用11次酶的活性没有明显减少,说明壳聚糖一Fe3O4超顺磁微球固定脂肪酶具有高的活性和稳定性。  相似文献   

12.
利用传统的共沉淀法合成纳米级磁性Fe3O4,并用油酸和十二烷基磺酸钠双层表面活性剂对其进行改性,制备出稳定性好,能够很好的分散到极性溶剂中的磁流体。以磁流体为种子,通过乳液聚合方法以甲基丙烯酸甲酯(MMA)和三羟甲基丙烷三丙烯酸酯(TMPTA)为原料进行交联共聚得到了表面带双键的磁性微球,再利用二乙烯三胺(DETA)与磁性微球表面的双键发生迈克尔加成反应使其氨基化,最后用丙烯酸正丁酯(BA)与DETA改性磁性微球表面氨基反应得到多齿胺配体。通过FTIR对其结构进行了表征,元素分析测得其含氮量约为1.0mmol/g。进一步将此种配体与CuCl配位并多次重复应用于催化CCl4与MMA及三氯乙酸甲酯与苯乙烯(St)的原子转移自由基加成(ATRA)反应,通过气相色谱法测定了原料的转化率随时间变化。结果表明:在催化CCl4与MMA和三氯乙酸甲酯与St的ATRA反应中,此种配体至少可以重复使用5次,且第一次转化率在40h内可达到80%以上,第5次时仍可达到35%以上。  相似文献   

13.
以自制磁性琼脂糖微球为基质,环氧氯丙烷为活化剂,亚氨基乙二酸作为螯合剂,制备了表面螯合Ni2+的磁性凝胶微球(Mag—Agarose—Ni).IR结果表明Ni2+成功螯合到了磁性凝琼脂糖胶微球上;SEM结果显示在螯合Ni2+后,Mag—Agarose-Ni形貌没有发生明显变化,且平均粒径为23btm;原子吸收光谱结果表明Mag—Agarose-Ni表面螫合的Ni2+的量为2.12×10mol/mg;磁性能测试表明Mag—Agarose-Ni具有超顺磁性,其磁饱和强度为20.8emu/g,具有良好的磁响应性.将Mag—AgaroseNi用于六聚组氨酸融合蛋白K8的纯化研究,SDS-PAGE结果表明Mag—Agarose—Ni较市售Ni—NTA对K8具有更优的亲和分离效果,经15min的孵育后,Mag—Agarose—Ni对K8的吸附容量可达到8.8μg/mg.  相似文献   

14.
采用离子液体辅助尿素法合成了多级结构的NiAl-LDH(水滑石), 通过焙烧处理得到花状结构的复合金属氧化物(MMO). 对所合成样品进行罗丹明B吸附实验, 结果表明焙烧产物MMO 由于自身丰富的孔结构对废水溶液中的染料吸附具有较强的吸附效果; 更重要的是通过800℃焙烧处理得到MMO 样品具有较强磁性, 这种磁性吸附剂不仅可以实现对废水中染料的高效吸附, 同时由于自身磁性, 在外加磁场的作用下易于实现吸附剂的可循环利用.   相似文献   

15.
磁性Fe3O4明胶复合纳米粒子的制备与表征   总被引:2,自引:0,他引:2  
用化学共沉淀法制备磁性Fe3O4纳米粒子,然后用异丙醇为凝聚剂采用单凝聚法制备磁性Fe3O4明胶复合纳米粒子。考察了明胶浓度与异丙醇的体积以及Fe3O4含量对粒径分布及性能的关系。采用透射电子显微镜和Zetasizer粒度分析仪测量磁性明胶复合纳米粒子的平均粒径,X射线衍射仪和红外光谱以及热重及差热分析进行结构和热稳定分析。结果表明磁性Fe3O4明胶复合纳米粒子中的Fe3O4纳米粒子被明胶所包覆,而且粒径很小,具有良好的热稳定性。  相似文献   

16.
采用改进的悬浮聚合法制备磁性聚苯乙烯微球.利用扫描电子显微镜和振动样品磁强计对所合成磁性微球的尺寸和磁性能进行分析表征.采用巨磁阻生物传感器检测磁性微球的数量.结果表明:磁性微球粒径大小为0.5~50μm,比饱和磁化强度为4.56 A.m2.kg-1.巨磁阻生物传感器对磁性聚苯乙烯微球数量具有很好的可检测性.在一定的范围内,随着磁性微球数量的增多,传感器的输出信号增强.在磁性微球一定数量的情况下,随着磁性微球粒径的增大,传感器的电阻变化量先增大后减小.  相似文献   

17.
采用化学共沉淀法制备了纳米磁性Fe3O4粒子,并用硅烷偶联剂对其进行表面修饰。以Fe3O4作为磁性内核,以戊二醛作为交联剂,采用反相悬浮交联法制备了Fe3O4-阴离子瓜尔胶磁性微球,并用红外光谱、扫描电镜和磁学性质测量系统对样品进行了表征。通过对阿司匹林模型药物的负载实验,发现修饰后的Fe3O4-阴离子瓜尔胶磁性微球具有较好的载药性。  相似文献   

18.
壳聚糖磁性微球对偶氮品红的吸附   总被引:2,自引:0,他引:2  
利用反相悬浮交联法,以Fe3O4为核,制备了壳聚糖磁性微球.将其用于水中偶氮品红的吸附,研究了溶液酸度、吸附时间、偶氮品红初始浓度、温度、离子强度对吸附的影响.结果表明:在40℃,pH 4.0,无盐条件下吸附效果最佳,壳聚糖磁性微球对偶氮品红的饱和吸附量达到357.1 mg/g.运用相关数学模型拟合实验数据得出,该吸附同时符合Freundlich和Langmuir模型(均R2>0.96).经3次重复使用再生后壳聚糖磁性微球对偶氮品红的吸附率仍高于90%.该种新型吸附剂吸附能力强、速度快且易分离和可再生.  相似文献   

19.
采用自稳定沉淀聚合方法制备了交联(α-甲基苯乙烯-马来酸酐)共聚物(PAMSM)微球,探讨了交联剂种类、交联剂用量对所得交联聚合物粒子形貌、粒径、粒径分布及热力学性能的影响。结果表明,以二乙烯基苯(DVB)为交联剂所制得的聚合物微球的粒径、粒径分布及形貌随二乙烯基苯用量的增加变化不大,而以乙二醇二甲基丙烯酸酯和三羟甲基丙烷三甲基丙烯酸酯为交联剂微球的粒径则随交联剂用量的增多而增大,在较高交联剂用量条件下粒径分布变宽。微球的交联程度可以通过交联剂用量的变化进行调控。对交联PAMSM产物的热性能分析发现,交联剂可以提高PAMSM的玻璃化转变温度,且提高的程度与交联剂在分子链中的化学结构有关,而交联剂对PAMSM热稳定性能的影响不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号