首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
将磁粉与聚合氯化铝(PAC)、聚丙烯酰胺(PAM)联用组成复合絮凝剂来处理热轧废水。在改变絮凝剂各组分投加量的条件下进行絮凝试验,分析热轧废水的浊度和含油量变化,研究复合絮凝剂的最优投加方案。试验结果表明,当磁粉、PAC和PAM的投加量分别为5mg/L、15mg/L和1.5mg/L时,热轧废水的净化效果最佳,其浊度由82.6NTU降为10.5NTU,含油量由15.62mg/L降为7.44mg/L。  相似文献   

2.
油田压裂废水的Fenton氧化-絮凝回注处理研究   总被引:6,自引:0,他引:6  
针对油田压裂作业废水黏度高、浊度大、含油量高的特点,采用Fenton氧化-絮凝处理方法对压裂废水进行回注处理研究,探讨了废水的pH值、Fenton试剂和絮凝剂投加量、絮凝剂加药时间隔等因素对压裂废水氧化和絮凝处理效果的影响.结果表明:当压裂废水pH值为3.0、φ(H2O2)和ρ(FeSO4)分别为0.2%和20mg/L、PAC和PAM质量浓度分别30mg/L和5mg/L、絮凝剂加药时间间隔为30s、处理后水pH值调至7.5时,处理后压裂废水中的悬浮物含量和含油量分别为2.5mg/L和5.22mg/L,平均腐蚀速率和细菌含量分别为0.0110mm/a和101个/mL,达到油田回注水的水质标准.  相似文献   

3.
粉煤灰复配物处理印染废水   总被引:2,自引:0,他引:2  
为了降低印染废水中化学耗氧量(CODCr),选用2种常见絮凝剂与粉煤灰进行复配处理印染废水.考察不同复配方案对CODCr去除率的影响,确定最佳的配比.实验结果表明:粉煤灰与聚丙烯酰胺(PAM)和MgCl2的复配物处理印染废水时具有较高的CODCr去除率.在粉煤灰、MgCl2 和PAM的质量浓度分别为12 g/L、14 mg/L和40 mg/L时CODCr去除率达85%.  相似文献   

4.
PDMDAAC及其复合絮凝剂对模拟印染废水的处理   总被引:1,自引:0,他引:1  
采用聚二甲基二烯丙基氯化氨(PDMDAAC)及其复合絮凝剂分别处理质量浓度为30 mg/L直接耐酸大红4BS,30 mg/L酸性湖兰A,240 mg/L直接黄棕ND3G和10 mg/L碱性玫瑰精B这4种模拟印染废水.研究结果表明:当废水pH值为6.70~7.48时,PDMDAAC处理4种模拟印染废水,其脱色率低于20%;当pH值为12时,FeSO4-PDMDAAC复合絮凝剂处理直接耐酸大红模拟废水,其脱色率最高为87.40%;PFS-FeSO4-PDMDAAC复合絮凝剂处理酸性湖蓝模拟废水,其脱色率达到95.70%;当pH值为11-13时,PFS-FeSO4-PDMDAAC处理直接黄棕模拟废水,其脱色率约为60%;PFS-FeSO4-PDMDAAC处理碱性玫瑰精模拟废水,基本无脱色效果;在双氧水作用下,PFS-FeSO4-PDMDAAC复合絮凝剂处理直接黄棕和碱性玫瑰精模拟废水,其脱色率均最高,分别达到95.17%和90.30%.  相似文献   

5.
以无水氯化铝、碳酸铵、丙烯酰胺、丙烯酸、过硫酸铵及亚硫酸氢钠等为主要原材料自制聚合氯化铝(PAC)与聚丙烯酰胺(PAM)2种絮凝剂,将2种絮凝剂复合使用处理造纸中段废水.通过实验考察了絮凝剂的投加量、投加顺序、pH值、反应温度及反应时间等5种主要因素对处理效果的影响.实验结果表明:温度在30℃时,pH 7.0左右,先加入100mg/L的PAC快速搅拌2min,然后加入2.0mg/L的PAM搅拌3min,静置12min后絮凝效果达到最佳状态,其COD去除率可达74%以上,脱色率可达83%.  相似文献   

6.
以自制聚合氯化铝(PAC)和聚丙烯酰胺(PAM)两种絮凝剂进行复配,通过超声辅助处理印染废水。实验考察了复配絮凝剂和超声变频对印染废水处理的影响。结果表明:在pH为11~13时,先加入120 mg.L-1的PAC快速搅拌2 min;然后加入4.0 mg.L-1的PAM搅拌3 min,絮凝效果最佳。超声功率为150 W,频率100 Hz,作用时间30 min之内对絮凝效果有明显提升作用,此时的COD去除率可达82.5%,脱色率可达96.17%;而超声作用超过30 min,絮凝效果降低。  相似文献   

7.
PAC和PAM复合混凝剂对印染废水混凝试验研究   总被引:1,自引:0,他引:1  
陈敏新 《科技资讯》2007,(27):205-205
利用PAC和PAM复合混凝剂对印染废水的混凝处理最佳试验条件进行了研究,研究表明在溶液pH值为5,PAC投加量为500mg/L,PAM的用量为8mg/L,温度为20℃,搅拌时间为5min时,对印染废水处理得到较为满意的效果,COD的去除率为80%左右,经处理后水的透光率可达85%.  相似文献   

8.
针对高浓度含油乳化废水,使用无机和有机复合絮凝剂进行了复配絮凝预处理研究。考察了PAC和PDA在不同用量时对高浓度含油乳化废水的COD的去除效果。其预处理最佳复配絮凝剂用量为:PAC960mg/L,阳离子度10%,η=9.4dL/g的PDA96 mg/L。  相似文献   

9.
为提高絮凝剂的絮凝性能,降低絮凝剂的应用成本,实验研究了两种不同分子量的壳聚糖(CTS)与聚合氯化铝(PAC)复配使用的絮凝性能,并对生活污水进行了处理.结果表明:聚合氯化铝与壳聚糖复合能相互促进其絮凝效能,当壳聚糖分子量为1.05×106,污水pH为6.5,静置30min,总投加量为1.0mg/L,复合絮凝剂组成为PAC : CTS1=0.3 : 0.7时,废水的透光率达到98.9%,优于单独使用PAC和CTS.复合絮凝剂(CTS/PAC)兼有无机和有机絮凝剂的优点,是一种使用范围较广的新型絮凝剂.  相似文献   

10.
丙烷脱氢废水COD高(5 200~5 600 mg/L)、浊度大(1 700~1 800 NTU),难以直接进行生化处理,需要在进行生物法处理前,先进行混凝处理.使用聚丙烯酰胺(PAM)与常用的无机混凝剂聚合氯化铝(PAC)和聚合硫酸铁(PFS)进行配合使用对丙烷脱氢废水进行处理,以COD、浊度为指标,考察了PAC和PFS的适应性以及不同离子型的PAM与PAC复配的混凝效果.结果显示,单一使用时,PAC适应性好,达到同样效果投加量至多是PFS投加量的10%,总体而言PAC和PFS絮体小,难以固液分离,处理效果不佳;PAM与PAC配合使用时处理效果显著提高,两性离子的PAM效果不佳,阴离子和阳离子聚丙烯酰胺与PAC协同处理废水效果最好,絮体成型好,当废水pH=8,PAC投加量为6 mg/L,m(PAC)∶m(PAM1)∶m(PAM2)=6∶0.15∶0.35时,COD和浊度去除率分别达到了85.6%和98.5%,为实际处理丙烷脱氢废水提供了参数指导.  相似文献   

11.
以氧化石墨烯(GO)为絮凝剂,以水溶性阳离子型染料亚甲基蓝(MB)为处理对象,研究了GO对MB的絮凝效果,拟突破传统絮凝剂不能有效去除可溶性染料的瓶颈. 通过改进的Hummers法制备了GO,利用SEM、XRD、FT-IR对其进行了表征. 探讨了染料初始质量浓度、絮凝剂投加量、溶液pH以及搅拌时间对絮凝效果的影响,并通过测定GO、MB、反应前后溶液的电位和反应前后物质的红外光谱,分析了可能存在的絮凝机理. 同时,比较了几种常用的无机、有机絮凝剂对MB的絮凝效果. 结果表明:当pH=4,染料初始质量浓度为70 mg/L,絮凝剂投加量为180 mg/L,絮凝时间为9 min时,絮凝效率达到95%. 电性中和对絮凝过程起着主要作用,同时还存在吸附架桥作用. 与其他常用絮凝剂相比,GO具有投加量少、去除率高、pH适用范围广等优点,是一种具有广阔应用前景的絮凝剂.  相似文献   

12.
实验室废水的絮凝-活性炭吸附处理   总被引:3,自引:0,他引:3  
通过对处理前后废水中重金属、硫化物、挥发酚、苯胺等污染物测定,研究了两级絮凝-活性炭吸附法对实验室废水的处理效果。结果显示:硫酸亚铁(FeSO4·7H2O)与聚合氯化铝(PAC)结合的二级絮凝方法能有效地降低污水中的重金属和硫化物等其他污染物,二级使用聚合氯化铝(PAC)对一级絮凝中去除效果不好的Cr6 的去除效果显著,去除率达到90%。而活性炭对挥发酚、硫化物和银的去除效果最佳,去除率分别达到98%,70%和95.4%,全部达到国家要求的排放标准,改善了污水的浊度,并有效地降低了色度。在絮凝温度、搅拌、曝气及污水pH值调节范围一定的情况下,各种污染物的去除效果理想,多种污染物的去除率都在90%以上。实验表明:两级絮凝-活性炭法处理实验室废水效果显著,可有效地去除水中的有毒有害物质,降低实验室废水对环境的危害,是快速、低成本、工艺简单的处理实验室废水的有效途径。  相似文献   

13.
采用活化法制备土霉素菌渣活性炭(菌渣炭),并用于处理低浓度含铬废水。经过组分测定可以看出土霉素菌渣含有较高的挥发分,灰分含量较低;元素分析中C、O元素的含量较高,表明土霉素菌渣含有大量的有机物和菌体蛋白;BET测得菌渣炭的比表面积、孔容和孔径都较大,通过扫描电镜可观察出菌渣炭具有较多的微孔和中孔,有利于对Cr(VI)定的吸附。通过单因素实验确定在初始Cr(VI)浓度为2mg/L时菌渣炭对Cr(VI)的最佳吸附pH、吸附剂投加量、吸附时间分别为4、0.5g/L、 50min, Cr(VI)的最高去除率为96.2%。热力学和动力学分析结果表明菌渣炭对Cr(VI)的吸附符合Freundlich等温吸附模型和准二级动力学模型。菌渣炭的饱和吸附量为17.93 mg/g,对Cr(VI)的吸附速率与吸附剂上未被占据的吸附位点的平方成正比。用1mol/L的HCl对菌渣炭进行洗脱再生,经过4次循环实验Cr(VI)的去除率为77.1%,剩余溶液中Cr(VI)浓度为0.459 mg/L,满足污水综合排放标准0.5 mg/L,菌渣炭的饱和吸附量为2.018 mg/g,表明菌渣炭的再生性能良好。  相似文献   

14.
高浓度焦化废水经生化处理后COD难以达标并浪费大量资源。采用实验室自制的无机絮凝剂PAC和助凝剂PAM对焦化废水原水进行了预处理。结果表明,PAC+PAM的投加量分别为2.5 g/L和0.025 g/L,搅拌时间8 min,温度25℃,pH值为6时可取得最佳的絮凝效果;对COD的最佳去除率为37.5%。GC-MS分析结果表明,焦化原水经PAC和PAM混凝预处理后主要去除物为苯酚类有机物,可采用碱沉淀法对其进行分离和资源化回收。  相似文献   

15.
复合铝混凝剂CPAC强化混凝去除藻类试验研究   总被引:2,自引:0,他引:2  
以三氯化铝和有机高分子PGA为原料,制备了复合混凝剂CPAC,并探讨了该种混凝剂对含藻水的强化混凝去除作用.结果表明:复合混凝剂混凝效果优于单独的无机混凝剂PAC,当混凝剂投加量(以Al质量计)为4.5 mg/L时,PAC的浊度去除率为84.3%,而CPAC的浊度去除率达到93.1%;CPAC对高浊度原水的去除效果好于低浊度原水,当原水浓度从30 NTU提高到1 000 NTU时,混凝剂投加量为4.5 mg/L,其浊度去除率相应的由81%提高到98.2%;混凝剂最挂投加量约为4.5 mg/L,在此浓度下,浊度和叶绿素a 的去除率达到最高,分别为93.1%和82.5%;pH在5.0~9.0范围内,混凝效果均比较稳定.  相似文献   

16.
分析江苏某城市污水处理厂聚合氯化铝(PAC)的投加对污水中铝离子以及微生物活性的影响。结果表明:低浓度的铝离子会增强微生物的活性,但浓度过高会对微生物产生抑制作用,当铝离子质量浓度为7.5mg/L时,对微生物的活性没有影响;当铝离子的质量浓度达到10mg/L时,对微生物活性会产生抑制作用;以微絮凝-砂滤工艺作为城市污水处理厂的深度处理工艺时,投加的聚合氯化铝质量浓度不宜超过12.5mg/L,当质量浓度达到15mg/L时,铝离子会对好氧池的微生物活性产生明显的抑制作用。  相似文献   

17.
研究了竹炭及其改性体粒径、用量、吸附时间、温度及铜离子(Cu2+)初始浓度等因素对Cu2+吸附效果的影响。结果表明:竹炭及其改性体对Cu*吸附率随粒径减小而增大,用量增加而增大;Cu2+初始浓度增大,吸附率减小;对Cu2+吸附平衡约2h;最佳吸附温度为20-40℃,pH为3—4。改性体2效果最佳,30-50目粒径时去除率达99%以上,当溶液浓度为1.26g/L时,其比吸附量最大,为95.8mg/g。  相似文献   

18.
次氯酸钠/过氧化氢法处理含铜绿微囊藻原水   总被引:3,自引:0,他引:3  
以铜绿微囊藻实验室单培养液及其10倍稀释液为原水,pH分别为7.3、7.6,用NaOCl和H2O2作氧化剂,以663nm吸光度变化百分率为指标,分别研究了单独氧化及先应用NaOCl后续H2O2氧化处理、再对已处理过的水样分别投加PAC混凝去除铜绿微囊藻的效果.结果表明:在水中NaOCl、H2O2浓度分别为2.0、1.5mg/L条件下,NaOCl、H2O2、联合氧化处理原水和稀释水的去除率分别为82.2%、50%,83.3%、57.1%,92.2%、78.5%;再分别投加PAC,浓度为40mg/L,混凝沉淀后,单独投加氧化剂的水样的去除率均不超过90%,联合氧化后的水样的去除率达到100%.NaOCl或H2O2刺激藻细胞分泌保护性粘性物质,这些粘性物质包裹藻细胞形成沉降性能良好的聚集体,但对PAC混凝有不利影响,联合氧化改善了这些物质的特性而促进了混凝效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号