首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了研究切口大小、水泥标号、粉煤灰掺量对聚乙烯醇纤维增强水泥基复合材料(简称PVA-FRCCs)拉伸力学特性的影响,采用矩形薄板试件,在试件端部用环氧树脂贴一层碳纤维布或者玻璃纤维布,然后粘贴上楔形钢板进行端部加固避免应力集中破坏;采用MTS疲劳试验机控制系统,利用等速位移控制,得到了稳定的拉伸应力-应变全曲线.通过比较切口和无切口直接拉伸试件在起裂荷载、峰值荷载及其对应的应变差异发现:切口较小时,差异不大,但切口较大时,起裂荷载和峰值荷载都降低,起裂荷载对应的应变变化不大,但峰值荷载对应的拉应变和抗拉韧性值A都增加.说明两边有较小切口时反而有利于多条裂缝开展,小切口并不影响裂缝的开裂形态,起始裂缝发生的位置和无切口试件相同,一般不出现在切口处,但当切口长度较大时,裂缝开裂形态受开口影响较大,起始裂缝一般出现在切口处.  相似文献   

2.
开展了使用6种不同纤维配置纤维增强水泥基复合材料ECC的基本力学性能研究.探讨了纤维直径、纤维长度及纤维种类对纤维临界体积率的影响.通过4点弯曲试验,量测了不同掺量及不同种类纤维制成的ECC试件荷载-跨中截面挠度曲线,观测了破坏形态及裂缝分布、开展情况.试验结果表明,纤维直径是临界体积率的主要影响因素,且与临界体积率呈线性关系.使用碳纤维CF、玄武岩纤维BF制备的ECC试件,破坏时没有呈现出多点开裂现象,为脆性破坏.使用聚乙烯醇纤维PVA和聚丙烯纤维PP制备的试件表现出了良好的延展性,其应变硬化指数和韧性指数均较高.PP纤维制备的试件破坏时裂缝数量少,最大裂缝宽度相对较宽,而PVA纤维制备的试件破坏时裂缝数量多,最大裂缝宽度较小.  相似文献   

3.
混杂钢纤维水泥基材料的力学行为   总被引:1,自引:0,他引:1  
研究了微细钢纤维以及中等直径钢纤维混杂增强水泥基材料的力学行为.结果表明,在纤维体积分数一定的情况下,混杂钢纤维体系对水泥基材料抗折强度的改善作用可优于单一直径钢纤维,而且,不同直径钢纤维混杂还可显著提高水泥基材料的断裂能和弯曲韧性,普通纤维增强水泥基材料断裂破坏时裂缝为沿切口开展的单一贯穿裂缝,而混杂钢纤维增强的试件破坏时切口附近呈现多缝开裂的现象,采用适当体积比的两种尺度钢纤维混杂增强基体,制备出了综合力学性能优越的混杂钢纤维增强水泥基材料。  相似文献   

4.
后浇UHTCC既有混凝土复合梁弯曲疲劳性能试验研究   总被引:1,自引:0,他引:1  
为研究疲劳荷载作用下超高韧性水泥基复合材料(UHTCC)对混凝土的增强作用,将UHTCC外浇层作为保护层,对既有着混凝土梁体一侧浇注UHTCC而制成的UHTCC/混凝土复合梁(UC复合梁)进行三点弯曲疲劳加载试验.实验结果表明:在疲劳荷载作用下,UC梁截面变形符合平截面假定;UHTCC层产生若干条可见裂缝,其数目随应力水平的下降而减少,混凝土层裂缝数目为1~3;复合梁随荷载循环的疲劳变形曲线表现出延性特征,呈现三阶段发展,变形能力随应力水平的下降而降低;在高周疲劳情况下,复合梁S-N双对数疲劳曲线线性良好.由此表明,利用超高韧性水泥基复合材料作为保护层能分散既有混凝土的表面裂缝,提高复合梁的变形能力和寿命.  相似文献   

5.
钢纤维增强超高强混凝土拉压比试验研究   总被引:1,自引:0,他引:1  
在超高强混凝土(C100级)中掺入螺纹型钢纤维,通过立方体抗压强度与劈裂抗拉强度试验,研究钢纤维对超高强混凝土增强增韧效果和拉压比性能的影响.立方体试件尺寸为100mm×100mm×100mm,钢纤维掺量为0、0.50%、0.75%、1.00%、1.50%.试验结果表明,掺入钢纤维后,超高强混凝土立方体试件裂缝开展路径较多,裂而不散,坏而不碎,抗压韧性显著增强;抗压强度提高10.6%~15.5%,劈裂抗拉强度提高38.2%~91.9%;掺入钢纤维的超高强混凝土拉压比为0.060 5~0.084 6,拉压比提高24.08%~73.46%.提出了钢纤维超高强混凝土立方体抗压强度与劈裂抗拉强度预测模型,预测值与试验值误差分别在±1.79%、±17.84%范围内.掺入钢纤维可使超高强混凝土脆性大、韧性小的缺点得到显著改善.  相似文献   

6.
混杂纤维增强高性能混凝土弯曲韧性研究   总被引:2,自引:0,他引:2  
选用钢纤维、塑钢纤维和杜拉纤维,在总体积掺率不超过1%条件下,进行了二元或三元混杂纤维增强高性能混凝土的抗压试验、劈拉试验以及带切口梁三点弯曲试验.绘制了荷载-挠度曲线以及荷载-裂缝开口位移曲线(CMOD),计算得到了混凝土开裂各阶段纤维所贡献的能量吸收值以及等效弯拉强度,对比分析了纤维混杂方式、掺量对混凝土基本力学性能以及峰值荷载后变形性能的影响.研究结果表明:三元混杂纤维混凝土具有较基体混凝土、单掺或二元混杂纤维增强混凝土更优的力学性能和变形性能,弯拉强度最大提高了28%,弯曲韧性试验荷载-位移曲线均呈现出明显的应变硬化现象,并表现出优越的裂缝控制能力;当纤维三元混杂且水灰比为0.31时,由0.7%弓形钢纤维、0.19%塑钢纤维与0.11%杜拉纤维混杂制得混凝土样本的强度以及弯曲韧性最优.  相似文献   

7.
武斌 《科学技术与工程》2024,24(4):1597-1608
为改善普通钢筋混凝土梁自重大、易开裂、承载力低等缺点,在混凝土中常加入钢纤维,端钩型钢纤维,作为常见的一种高性能钢纤维得到广泛关注,国内外学者针对端钩型钢纤维混凝土的基本力学性能开展了较多研究,而对端钩型钢纤维混凝土受弯构件的正截面受力性能有待深入研究。为研究端钩型钢纤维混凝土简支梁受弯性能,制作了四根端钩型钢纤维混凝土梁及一根普通混凝土梁,对其进行受弯性能试验,根据试验得到的破坏形态、承载力、荷载-挠度曲线、荷载-应变曲线,分析端钩型钢纤维体积掺量对试件受弯承载力及破坏形态的影响。研究结果表明:端钩型钢纤维混凝土简支梁与一般混凝土简支梁受弯过程类似,均经历了弹性、开裂、带裂缝工作、破坏四个阶段;端钩型钢纤维混凝土简支梁与一般混凝土简支梁受弯过程均基本符合“平截面假定”;端钩型钢纤维限制了裂缝的产生和发展,使得纤维混凝土梁变形能力增强;与一般混凝土梁相比,端钩型钢纤维混凝土梁抗裂性及极限承载力得到提高,且构件承载力与钢纤维体积掺量基本呈现正相关;基于试验数据,对现行规范中开裂弯矩及极限承载力计算公式进行优化,开裂弯矩方面考虑对截面抵抗矩塑性影响系数进行修正,极限承载力方面引入纤维混凝土正截面承载力影响系数ζ,经修正计算值可较好吻合试验值。  相似文献   

8.
采用大掺量矿物掺合料(35%粉煤灰+10%硅灰+10%偏高岭土)等量取代水泥,与最大粒径2.36 mm的天然砂和2种不同形状(端勾型与平直型)的超细镀铜钢纤维,制备出超高性能水泥基复合材料(UHPCC).通过分离式霍普金森压杆装置对UHPCC进行高速冲击压缩实验,研究了应变率、冲击次数、纤维种类及掺量对该材料抗多次冲击性能的影响规律,同时采用X-ray CT扫描测试技术,揭示了UHPCC的动态损伤变化规律及其抗多次冲击机理.结果表明,在钢纤维掺量不超过3%时,UHPCC抗冲击的能力随纤维掺量的增加而不断提高;动态压缩强度随应变率的提高而相应地增长;端勾型比平直钢纤维增强的UHPCC显示出更为优异的抗多次冲击压缩的性能,其破坏裂纹主要出现在试件的孔洞等薄弱区,破坏程度随冲击次数的增加而加剧,裂缝逐渐从边缘向中部扩展,最后导致试件贯通开裂.  相似文献   

9.
为了深入了解纤维混凝土的耐冲击性能,进行了不同体积掺率的高锆耐碱集束型玻璃纤维、粗聚丙烯纤维增强混凝土板的耐冲击性能的试验研究.通过试件的破坏形态、落锤的加速度时程和板底支座反力时程曲线,结合高速摄像机记录的整个试件冲击破坏过程,从动力学角度研究了纤维种类及纤维体积掺率对混凝土板耐冲击性能的改善效果.结果表明:经第2次冲击后,素混凝土与纤维混凝土板的破坏模式不同,素混凝土板呈脆性破坏,沿对角线方向破碎成4块;体积掺率为0.75%,的粗聚丙烯纤维混凝土板的损伤最小,板底出现9条主裂缝,无大面积混凝土崩落,板的塑形变形较大;体积掺率为0.75%,的高锆耐碱集束型玻璃纤维混凝土板的板底出现9条主裂缝,最大裂缝宽度仅为0.8,cm,底部出现半径约为8,cm的圆形混凝土崩落区域.通过加速度时程曲线可知,素混凝土与纤维混凝土板破坏过程也存在明显差异.在弹性变形阶段,纤维混凝土冲击持续时间比素混凝土约长1,ms;裂缝扩展及混凝土崩落阶段,当加速度降到约为峰值的1/3时,素混凝土板呈现脆性破坏,而纤维混凝土板的加速度时程曲线出现二次强化现象,呈延性破坏,纤维显著改善了板的冲击韧性,且纤维体积掺率越高,耐冲击性能改善效果越明显.  相似文献   

10.
将高强不锈钢绞线网/超高韧性水泥基复合材料(ECC)用于约束高强混凝土(简称HSME约束高强混凝土),并考虑混凝土强度(C55~C75)、ECC强度及横向钢绞线配网率等,开展其受压性能的试验和理论研究.由轴压试验可知:当HSME约束高强混凝土达到开裂荷载、85%的峰值荷载和峰值荷载时,最大裂缝宽度分别为0.02,0.08,0.20 mm,表现出极好的裂缝控制能力;破坏时整体裂而不碎,约束层和核心混凝土黏结良好.与素混凝土相比,HSME约束高强混凝土抗压强度、延性和变形能力显著增高.增大ECC强度和混凝土强度可增大其开裂荷载及峰值荷载,增大横向钢绞线配网率可增加其延性.引入ECC及横向钢绞线特征值,建立了 HSME约束高强混凝土抗压强度计算模型,并通过对比本试验和其他试验的结果,验证了该模型的有效性.  相似文献   

11.
PVA纤维增强高性能水泥基材料的韧性   总被引:2,自引:0,他引:2  
采用低掺量(纤维体积率为1%~2%)的高强度高弹模聚乙烯醇纤维(简称PVA纤维)进行延性纤维基材料韧性的研究,分析了材料组成参数(PVA纤维体积率、纤维长径比、界面改性剂和砂灰比等)对高强度高弹模PVA纤维增强水泥基材料韧性的影响。结果表明,使用高强度高弹模PVA纤维以及通过材料组分优化,可以在低体积率下得到高韧性水泥基复合材料,凹土可以做为PVA纤维的一种界面改性剂。  相似文献   

12.
纤维对沥青混凝土的改性效果已得到道路工程界的广泛认可,为探讨不同纤维对沥青混凝土断裂特征的影响,以玻璃纤维和玄武岩纤维作为研究对象,进行半圆抗拉试验,采用数字图像相关技术对半圆试件的全场位移与应变进行实时测量。通过分析极限抗拉强度、极限破坏应变、模量、裂缝缝嘴张开位移、临界断裂能、断裂韧性等指标,探讨了不同纤维对沥青混凝土抗裂性的增强效果。结果表明,两种纤维均能有效改善沥青混凝土的极限强度与破坏延性,纤维改性沥青混凝土具有更高的峰后持荷能力,在沥青混凝土开裂后仍能保持较高的承载能力。玻璃纤维改性沥青混凝土具有更高的临界断裂能量和断裂韧性,基于所选指标建议在工程应用中短切纤维长度不宜超过12 mm。  相似文献   

13.
张君  刘骞 《清华大学学报》2003,8(6):726-733
The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile strength, and the stress-crack width relationship. In general, the cracking strength is lower than the tensile strength of concrete. Crack propagation is governed by the cracking strength. This paper presents a method to determine the above material parameters from a three-point bending test. In the experiment, a pre-notched beam is used. Corresponding values of load, crack mouth opening displacement, and load point displacement are simultaneously recorded. From experimentally determined load-crack mouth opening displacement curves, the above-mentioned crack bridging parameters are deduced by a numerical procedure. The method can be used to evaluate the influence of coarse aggregate and cementitious matrix strength on the stress-crack width relationship, tensile strength, and fracture energy of concrete.  相似文献   

14.
通过对加筋及无筋陶粒混凝土和普通混凝土带大、小缺口的三点弯曲梁进行试验和有限元分析,对其断裂性能进行研究,分析得到配筋大小、混凝土品种和强度、切口深度对混凝土断裂韧度K_(IC)及临界裂缝尖端张开位移CTOD_(IC)的影响。提出了断裂韧度K_(IC)与混凝土抗拉强度、切口深度的计算公式。试验和分析证实。裂缝开始失稳扩展时,CTOD_(IC)值的变化范围很小,有可能成为控制混凝土失稳断裂的材料参数。  相似文献   

15.
为了研究聚丙烯纤维对水泥稳定碎石断裂韧性的影响,通过对84个尺寸为100 mm × 100 mm × 515 mm的聚丙烯纤维水泥稳定碎石和普通水泥稳定碎石三点弯曲试件断裂试验,测得了试件的断裂能(GF)、裂缝嘴张开位移(CMOD)和裂缝尖端张开位移(CTOD),并探讨了试验龄期、聚丙烯纤维体积掺量以及水泥掺量对聚丙烯纤维水泥稳定碎石断裂能的影响,对聚丙烯纤维水泥稳定碎石的经济性和施工和易性进行了简要分析,给出了聚丙烯纤维体积掺量合适的建议范围为0.6‰ ~ 0.8‰。试验结果表明:聚丙烯纤维的掺入可以明显提高水泥稳定碎石的断裂能、极限裂缝嘴张开位移(CMODmax)和极限裂缝尖端张开位移(CTODmax);随着试验龄期的增长,无论聚丙烯纤维掺入与否,水泥稳定碎石断裂能均呈增大趋势,但聚丙烯纤维水泥稳定碎石断裂能增大的速率较大;随着纤维体积掺量的增加,水泥稳定碎石断裂能、CMODmax和CTODmax逐渐增大,尤其是当纤维体积掺量大于0.6‰时,GF增大的效果更为明显;随水泥掺量的增加,聚丙烯纤维水泥稳定碎石试件的极限荷载逐渐增加,但断裂能却逐渐减小。  相似文献   

16.
本文实验测试了预应变对20g钢断裂韧性的影响.在弹塑性有限元数值分析的基础上,讨论了裂纹尖端张开位移与最大应变间的关系及预应变量ε_p对临界断裂应变的影响.同时,在Rice-Tracey空穴扩张模型的基础上,探讨了裂纹前方空穴形成的原因及主裂纹扩展的条件,分析了预应变量ε_p对20g钢断裂性质的影响.  相似文献   

17.
水泥基材料抗拉强度低、韧性差是其易开裂的主要原因之一。高模量PVA纤维可增强基材韧性,使其呈现准应变硬化和多缝开裂特征,改善结构耐久性。通过四点弯曲试验得出了不同加载速率和配比SHCC的力-变形曲线并用CON-SOFT软件计算断裂能。结果表明,硅灰使材料抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能降低。甲基纤维素使SHCC脆性增大。加载速率降低,材料表现出更好的应变硬化性能,微裂缝条数增多。SHCC砂子最大粒径高于ECC,虽达不到后者的最大拉应变,但可降低成本并满足工程需要。韧性性能研究给出了基于耐久性能优化设计和评定SHCC的实用方法。  相似文献   

18.
基于纤维水泥基材料的桥联法则(桥联应力-裂纹张开位移关系)和K叠加原理,建立了混杂纤维水泥基复合材料的桥联裂缝模型,并针对三点受弯梁建立了简化的断裂分析模型.桥联裂缝模型能够描述混杂纤维水泥基复合材料断裂全过程的裂缝扩展规律,灵活地分析不同纤维对断裂韧度的贡献,并可以计算混杂纤维水泥基复合材料裂纹尖端应力强度因子、断裂韧度和临界缝长.  相似文献   

19.
基于三点弯曲试验,研究水胶比、再生微粉取代率、纤维种类对纤维再生微粉水泥基复合材料(FRPCC)断裂性能的影响.根据双K断裂参数分析各因素对FRPCC的增韧效果,并结合微观形貌分析各因素对FRPCC韧性的改善机制.结果表明:水胶比增大使纤维再生微粉水泥基复合材料失稳韧度先升高后降低;断裂韧度随着再生微粉取代率提升呈现先增后减的趋势;单掺玄武岩纤维(BF)会使FRPCC脆性增加,聚乙烯醇纤维(PVA纤维)占比增大能够明显提升FRPCC的断裂韧度;当水胶比为0.28、再生微粉取代率为45%、复掺0.2%玄武岩纤维和1.7%PVA纤维时,微观结构紧密,断裂韧度最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号