首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
提出一类求解三维双调和方程的高精度紧致差分格式.该类格式是以泊松方程的高精度格式为基础的四阶精度19点紧致差分格式和六阶精度27点紧致差分格式.采用多重网格方法求解由高精度紧致差分格式所形成的代数方程组,并与低精度方法进行比较.讨论多重网格方法中不同松驰算子的迭代收敛效果.数值实验结果验证四阶紧致差分格式和六阶紧致差分格式的精度以及多重网格方法的可靠性和高效性.  相似文献   

2.
为得到求解二维Helmholtz方程的高精度差分法, 构造了一种改进六阶紧致差分格式: 首先, 给出一种带优化参数的六阶紧致差分格式的截断误差; 然后, 对此截断误差的部分项进行二阶紧致逼近, 得到一种改进紧致差分格式; 其次, 对该格式进行了收敛性分析, 证明其为六阶收敛的; 最后, 基于极小化数值频散的思想, 给出该格式优化参数的加细选取策略。与带优化参数的六阶紧致差分格式相比, 数值实验说明改进六阶紧致差分格式的数值精度有了显著提高, 且其误差对波数k的依赖性更低。  相似文献   

3.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

4.
基于三维泊松方程的四阶紧致差分格式,利用Richardson外推法、算子插值法和多重网格算法,使已有四阶紧致差分格式的计算精度整体提高二阶,精度达到六阶.数值实验验证六阶格式的精确性和多重网格方法的有效性,并与四阶紧致差分格式多重网格方法的计算结果进行比较.  相似文献   

5.
【目的】针对一维椭圆型两点边值问题,发展一种六阶混合型高精度紧致差分格式。【方法】主要利用泰勒级数展开和组合紧致差分格式(Combined compact difference,CCD)的思想,将未知函数和它的一阶导数、二阶导数作为未知变量,利用函数和各阶导数之间的固定关系,将原方程对一阶导数泰勒级数展开式中产生的三阶导数项进行替换,同时也利用了一阶导数和二阶导数的六阶组合紧致格式。它的特点是显式紧致差分格式和隐式紧致差分格式混合在一起。【结果】最终使得混合型紧致差分格式整体达到了六阶精度。此外,提出的格式还具有推导简便,易实现编程,且能直接推广到高维问题的优点。尽管格式是六阶精度,但与四阶精度格式一样,空间方向仅仅需要3个网格点,因此由格式生成的方程组可采用追赶法进行高效求解。【结论】最后通过对具有精确解的4个算例进行数值实验,数值结果验证了该格式的精确性和可靠性。  相似文献   

6.
该文提出了在周期和Dirichlet边界条件下的1维对流扩散方程的紧致差分格式.在这2种边界条件下对空间变量使用4阶紧致差分格式,对时间变量利用3次Hermite插值公式构造空间和时间同时具有4阶精度的数值格式,并证明了格式的绝对稳定性,最后通过对2种边界条件下的算例进行数值实验和比较,验证了格式的精确性和可靠性.  相似文献   

7.
将算子分裂方法与高阶紧致差分方法相结合,构造了2维Maxwell方程的局部1维紧致时域有限差分格式.该格式在时间方向和空间方向分别具有1阶和4阶收敛精度,并且具有计算效率高、无条件稳定的优点.数值实验表明:新构造的格式是能量守恒、高效率的.  相似文献   

8.
求解泊松方程的紧致高阶差分方法   总被引:8,自引:0,他引:8  
基于Hermite插值法的基本思想,提出了求解二维泊松(Poisson)方程的紧致高阶差分方法,得到了一般形式的四阶和六阶差分紧致格式。通过数值实验证明了格式的良好性态。  相似文献   

9.
紧致差分格式是一种高精度的有限差分方法.本文给出了Cattaneo模型的四阶紧致差分格式,通过对具体算例进行数值模拟,和二阶差分格式比较,验证了紧致差分方法的精确性和有效性.  相似文献   

10.
在满足一定的初值、边值条件下,结合不同的差分格式对非线性薛定谔(NLS)方程进行数值求解.分别利用经典的向前差分算子、二阶中心差分算子、Crank-Nicolson方法和紧致差分算子构造向前Euler格式、Crank-Nicolson格式和紧致差分格式,并证明Crank-Nicolson格式和紧致差分格式精确保持离散质量守恒和能量守恒.利用数学软件MATLAB进行实验计算,结果表明:所构造的3种格式具有合理性及有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号