首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究下击暴流作用下高层建筑的风荷载特性,采用冲击射流装置对5种不同深宽比的高层建筑模型进行测压试验,分析了深宽比和径向距离对模型局部和整体风荷载的影响.结果表明:层阻力系数沿高度方向呈下大上小的分布特征,最大层阻力系数出现在0.25H(H为建筑高度)左右,层脉动升力系数沿高度变化较为平缓;随深宽比的增大,层平均阻力系数略有减小,层脉动升力系数显著增大,模型整体的平均阻力系数和顺风向弯矩系数略有减小,整体的脉动升力系数及横风向弯矩系数明显增大;随径向距离的增大,层平均阻力系数迅速减小,层脉动阻力系数和脉动升力系数先增大后减小,模型整体的平均阻力系数和弯矩系数迅速减小,整体的脉动阻力及升力系数先增大后减小.  相似文献   

2.
为研究雷暴冲击风作用下高层建筑风荷载的频域特性,采用冲击射流装置模拟雷暴冲击风,对5个不同深宽比(D/B)的矩形高层建筑模型进行测压试验.根据试验数据,对模型层风荷载功率谱、相关系数以及相干性进行了详细分析.结果表明:阻力系数谱基本与顺风向风速谱保持一致,随着径向距离的增加,阻力系数谱的频带变宽,主频及能量逐渐减小;升力及扭矩系数谱随模型深宽比的增大而有所差异,但变化不明显,考虑主要是受雷暴风近地面特殊的湍流风场影响;径向距离和模型深宽比对层阻力系数的相关性影响较大,对升力和扭矩系数的相关性影响相对较小;层阻力系数相干性随频率的增大呈线性减小;层升力系数相干性在低频段保持平稳,而后呈指数衰减,层扭矩系数相对较小,且随频率的增大而按指数率迅速衰减.  相似文献   

3.
利用刚性模型测压试验,研究了施扰建筑相对高度变化对主建筑层升力系数和层脉动升力功率谱的影响规律.试验包含了3个并列位置、5个串列位置和3个斜列位置.结果表明:建筑物并列时,高度比越大则层平均升力系数大,层脉动升力功率谱受影响的范围大;建筑物串列时,高度比对层平均升力系数的影响很小,对层脉动升力系数的大小及沿高分布形式有显著影响,施扰建筑高度超过受扰建筑时层脉动升力功率谱受到的影响很大,尤其是顶部区域;斜列工况时,并列间距比对影响规律起主导作用.  相似文献   

4.
针对矩形截面高层建筑的整体风荷载,进行B类地貌7种长宽比建筑的测压风洞试验,分析各测点层的体型系数随风向角和高度的变化,研究整体体型系数随风向角和长宽比的变化,最后将试验结果与规范值进行比较.研究表明:垂直长边方向的体型系数最大值出现在正迎风角度;垂直短边方向的体型系数最大值出现在正迎风偏20°角度.垂直短边方向的体型系数随着长宽比的增大而减小.试验获得的整体体型系数随深宽比的变化趋势与规范一致,但数据上有偏差.当深宽比不大于1时,部分试验数据大于规范值,最大值出现在深宽比1∶2工况;当深宽比大于1时,试验数据小于规范值.  相似文献   

5.
对我国浙江沿海多个风灾频发区域进行深入调研,全面地确定了新农村典型低矮建筑双坡屋盖的外形几何参数.基于此进行了刚性模型测压风洞试验,研究了屋盖升力系数极值的变化规律,讨论了最不利屋盖升力系数随建筑外形几何参数的变化,用多参数非线性最小二乘法将最不利屋盖升力系数拟合为屋盖坡角、高宽比和厚宽比的函数,并对拟合函数进行了误差...  相似文献   

6.
基于Realizableκ-ε湍流模型的延迟分离涡模拟(DDES)方法,求解不同缩比尺度和来流速度下列车周围非定常流场.通过改变模型缩比尺度和来流速度来研究列车非定常气动特性的雷诺数效应和尺度效应.研究结果表明:随雷诺数增加,各节车气动阻力系数均方根基本呈现减小趋势,且波动明显;随雷诺数增大,列车各节车气动阻力系数和升力系数标准差均先减小后增大,且波动明显;气动力系数功率谱密度随雷诺数增大而变小;雷诺数对气动力系数主频有影响,但无明显规律;列车气动力的尺度效应显著,随雷诺数增大,列车气动力的尺度效应减弱,且列车升力的尺度效应相对显著;列车非定常气动阻力和升力振动的尺度效应随雷诺数增大而减弱,且列车非定常升力振动的尺度效应更加显著;尺度效应不改变列车气动力以低频为主的振动特性和列车气动力功率谱密度的分布规律,对气动力振动主频及其功率谱密度有显著影响.  相似文献   

7.
在低紊流度的均匀流场中对4种圆角率(R/D=0,5%,10%,15%)的3∶1二维矩形柱体模型进行了刚性模型测压试验.试验雷诺数的变化范围为1.1×105~6.8×105,通过风压时程积分的方法获得了模型的气动力系数时程.研究了4个模型的气动力系数及其功率谱随雷诺数的变化规律.研究表明,圆角率为R/D=0和5%的模型的平均阻力系数随雷诺数的增大而增大,而圆角率为10%和15%的模型的平均阻力系数、均方根阻力系数和均方根升力系数随雷诺数地增大出现了明显地跳跃.圆角率为R/D=0和5%的模型的气动力系数功率谱曲线随雷诺数的变化较小,但圆角率为10%和15%的模型的气动力系数功率谱曲线呈现了明显的雷诺数效应.此外,3∶1二维矩形柱体模型的Strouhal数随着圆角率的增大而增大.  相似文献   

8.
在大气边界层风洞中开展了在0.5 H和0.85 H高度设置洞口的高层建筑刚性模型测力试验,获得不同洞口尺寸、高度、位置以及数量时的高层建筑风致基底反力.从基底弯矩系数和基底一阶广义气动力谱研究了不同洞口设置对高层建筑风效应的影响.研究结果表明:1)顺风向开洞能有效地降低顺风向基底平均弯矩,并且上部开洞效果优于下部开洞,开洞率越大效果越明显;横向基底平均弯矩比较小,大开洞提高基底横向平均弯矩,小开洞则相反;开洞对横风向与顺风向的基底脉动弯矩都有较大影响.2)不管是大开洞还是小开洞,在折算频率约为0.12位置处,均出现了与旋涡脱落频率相近的窄带峰值,且不同工况下,低频段的功率谱值差异略大于高频段.  相似文献   

9.
针对微型飞行器,采用动网格方法计算了旋转超前、同步、滞后3种拍动模式下的平板升力性能.通过比较分析二维、三维拍动平板的升力性能以及尾涡分布变化,探讨了拍动平板升力性能与其运动规律的关系.计算表明:旋转同步和超前模式下的平板升力系数明显高于旋转滞后模式下的平板升力系数;二维、三维平板升力系数均随角振幅的增大而减小,随相位差的增大而增大,拍动振幅的影响相对较小;角振幅较大时,旋转超前模式中三维平板升力系数均明显高于二维平板升力系数,旋转同步模式中二维、三维平板升力系数变化不明显,旋转滞后模式中仅当小角振幅且小平移振幅时,三维平板升力系数增加较大.  相似文献   

10.
滑阀矩形节流槽阀口的流量系数   总被引:2,自引:0,他引:2  
基于阀口流量压差特性试验和矩形阀口面积计算,对滑阀上矩形节流槽阀口的流量系数进行研究,获得滑阀矩形节流槽阀口流量系数及其变化规律.研究发现:滑阀矩形节流槽阀口流量系数与阀口开度、液流方向、截面深宽比和截面水力直径关系密切,阀口开度较小时流量系数接近于1,随着阀口开度的增大而逐渐减小,在阀口中间区段接近于常数,在接近全开度时流量系数又快速增大;流入节流槽方向的流量系数比流出方向大0.05~0.10;流量系数随矩形节流槽截面深宽比增大而增大,并随截面水力直径增大而有所增大.  相似文献   

11.
通过对包括CRH2在内的4种不同纵向长细比比例尺为1∶8的高速列车模型进行风洞试验,分析雷诺数对车辆气动力系数的影响;比较4种高速列车模型的气动力特性;对不同流线型外形列车进行大侧偏角试验,研究高速列车在侧风作用下的安全性.研究结果表明:列车流线型头部越长,鼻形更加突出尖锐,头部流线型更加光滑,更有利于降低空气阻力;当模型列车流线型长度相差不大时,纵向长细比系数越大即车头外形越细长,对减阻越有利;4种动车组头车、中车和尾车的侧向力及升力系数均随侧滑角的增大而迅速增大;当侧滑角大于10°时,头部最大纵剖面轮廓线曲率较大的模型,横风作用下的侧向力系数比其他3种模型车的侧向力系数显著增大,升力系数较小.  相似文献   

12.
为研究栏杆高度对流线型箱梁涡激振动性能的影响并揭示其机理,通过节段模型风洞动态测压与测振试验,研究了流线型箱梁涡振响应、平均和脉动风压系数、频域特性以及局部升力对涡振的贡献系数分布情况. 结果表明:安装栏杆后主梁表面的平均风压系数增大,脉动风压系数变化复杂,脉动风压卓越频率与模型自振频率基本一致,局部升力对涡振的贡献作用增大,使主梁涡振加剧;栏杆高度的变化对主梁表面平均风压系数基本没有影响,但对其脉动风压系数的分布规律及脉动压力功率谱幅值有较大影响;栏杆高度的变化,使主梁上表面前部和尾部区域的局部升力对涡振贡献程度呈现出显著差异,当贡献值增大时,主梁涡振响应增大. 当栏杆高度为45%的梁高时流线型箱梁的涡振幅值最大,在此基础上适当降低或增大栏杆高度均有一定的抑振效果,降低栏杆高度效果更好. 研究结果为流线型箱梁栏杆的设计和相关研究提供了依据和参考.  相似文献   

13.
根据江苏句容下蜀次生栎林气象观测塔30 m处三维超声风温仪1 a的观测资料,应用温度方差方法计算了空气动力学参数,并对其影响因子(风向、风速、摩擦风速和叶面积 指数(LAI))进行了分析。研究结果表明,零平面位移d和粗糙度Z0都具有明显的随着植被生长先增大后减小的季节变化趋势,两者生长季的平均值为15.20 m和1.86 m,非生长季为 14.25 m和1.24 m。d随风向无太大变化,Z0在90°~180°和300°~30°的主风向上有显著变化,平均值分别为1.23 m和1.81 m。Z0随风速增大而减小,当风速增大到一定程度后Z0 随风速的变化较小,而Z0随着摩擦风速的增大而变大。d随LAI增大而增大,Z0也随LAI增大而增大,当LAI增大到一定值时,Z0随着LAI的增大而变化不大。根据有效数据比分析表明 ,TVM法中的系数C3取3.5、C1取0.9~1.05较合适。  相似文献   

14.
介绍了表面增强型蒸发强化管,并对氟利昂制冷工质R22在该管外的沸腾换热进行了实验研究.实验通过对4根不同管型的蒸发强化管进行对比,分析了不同管型参数对管外换热系数的影响.得出结论:4根强化管的总传热系数随流速变化的趋势有所不同;1^#管和3^#管的总传热系数在实验流速范围内相差不大;4^#管的总传热系数随流速的变化曲线最为平坦;2^#管是4根管子中总传热系数随流速变化最大的一根管子.  相似文献   

15.
为研究脉动风场对覆冰导线气动力特性的影响,基于流体动力学软件Fluent,计算了新月形覆冰导线在正弦变化风场下的气动力系数,并与定常风场下的模拟结果进行比较;分析了脉动风的频率和幅值对气动力的影响.结果发现:气动力系数也呈正弦规律变化,其平均值(或绝对值)大于定常风场下的数值,二者随攻角的变化规律相同;脉动风频率大于1 Hz(短周期脉动)时,随频率的增加,气动力系数出现峰值的时间前移,阻力系数和扭转系数的平均值明显减小,幅值变化增大,升力系数的平均值则明显增加,幅值变化减小;脉动风幅值增加时,气动力系数明显增大,且其前半周期随幅值的变化比后半周期的变化要大,具有不对称性.因此工程中预测由导线舞动导致的塔承受载荷以及输电线路防舞设计时,应考虑脉动风场气动力系数对舞动的影响.  相似文献   

16.
通过刚性模型表面风压测量风洞试验,分析了某项目中高200m的方形截面超高层建筑对其相邻的外形相同的另一栋超高层建筑的基底弯矩系数均值、均方根值及功率谱的干扰效应。  相似文献   

17.
基于有限体积法计算了一种具有小长径比、大展弦比张开式尾翼弹在有攻角超声速粘性流动时的气动特性,分析了该弹周围的流场特性。研究结果表明,该尾翼弹的阻力系数和升力系数均随着马赫数增大而减少,随攻角增大而增大,且呈线性变化;当马赫数从2增大到4时,攻角从4°增大到12°,压心位置变化范围占全弹长的10.3%。  相似文献   

18.
为提高工程中桩身侧向变形较大时纵向和横向承载单桩的设计及计算水平,考虑桩身初始微倾斜及土体的弹塑性,采用矩阵计算法得到地基水平抗力系数为常数时桩身侧向变形和内力的解及桩身最大位移、最大弯矩及其所在位置的计算方法。研究结果表明:解的计算值与模型试验值较吻合;当桩顶自由时,桩身最大位移、最大弯矩及土体屈服后桩身最大弯矩距地面的距离均随桩身初始倾角的增大而增大;桩身初始微倾斜对桩身侧向响应的影响随纵向荷载的增大而增大;桩身最大位移、最大弯矩及桩身最大弯矩距地面的距离均随纵向荷载的增大而增大,且其变化速率随纵向荷载和桩身初始倾角的增大而增大,因此,土体的弹塑性、纵向荷载及桩身初始微倾斜等对桩身侧向响应的影响不容忽视。  相似文献   

19.
风沙环境对NACA-0012翼型气动性能的影响   总被引:1,自引:0,他引:1  
采用离散相模型对风沙环境下风力机传统对称翼型NACA-0012的气固两相流动进行数值模拟,结合k-ε湍流模型求解雷诺时均N-S方程,研究风沙环境下NACA-0012翼型的升、阻力系数随固相质量浓度和颗粒中值直径变化的规律.结果表明,同一中值直径时,固相质量浓度对翼型的升、阻力系数影响较小,随着固相质量浓度增大,翼型的升力系数先迅速增大了洁净空气时的8.2%左右,然后趋于稳定,当固相颗粒质量浓度大于1.02kg/m3后,升力系数再持续增大;阻力系数先略有减小,然后趋于稳定,当固相颗粒质量浓度大于1.02kg/m3后,阻力系数再持续增大.同一固相质量浓度时,沙尘的颗粒直径对风力机翼型的升、阻力系数影响较大,颗粒直径越小,对翼型的升、阻力系数的影响越大,随着颗粒中值直径的增大,翼型的升力系数先迅速减小再逐渐增大,最后趋于稳定;阻力系数先迅速增大再逐渐减小,然后略有增大,最后趋于稳定.  相似文献   

20.
为阐明双方柱中上游方柱尾流对下游方柱脉动气动性能的影响,在雷诺数Re=8.0×104均匀来流条件下,完成了间距比P/B=1.25~5(其中P为柱心距,B为方柱边长)、全风向角α=0°~90°的双方柱测压风洞试验.分析了不同P/B条件时下游方柱脉动气动力、升力功率谱、Strouhal数和气动力展向相关性随α的变化规律.发现P/B<3时下游方柱的脉动气动力整体上小于单方柱,且α≥40°时几乎不随风向角变化.但在3≤P/B≤5且0°≤α≤30°时下游方柱脉动阻力远大于单方柱.下游方柱的脉动气动力、升力功率谱和气动力展向相关性随α的变化规律在P/B=3前后差异显著.P/B<3时,下游方柱旋涡脱落受到显著抑制;P/B>3时,下游方柱的脉动气动性能近似于单方柱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号