首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
为解决大跨径钢桥正交异性钢桥面板普遍存在的疲劳开裂且维修困难等问题,提出了一种疲劳裂缝可免修复的UHPC加固新结构. 以一座在役大跨径悬索桥为研究对象,介绍了新结构的应用背景,并对大桥原沥青铺装、裸钢桥面、钢-UHPC轻型组合结构三种桥面状态分别开展了现场试验. 基于试验结果,系统揭示了钢桥面4类典型疲劳细节的受力特性,包括应力分布规律和加固后的应力降幅,同时,对实桥建立了局部梁段有限元模型,模拟试验中的所有加载工况并进行了对比分析,发现计算得到的应力响应面与试验结果基本一致,最大误差约为10%. 研究结果表明:对于每类疲劳细节,其在纯钢桥面和原沥青铺装两种状态下的应力基本无差异,表明原沥青铺装劣化严重,无法改善钢桥面的疲劳受力状态;而对比铺设UHPC前、后,钢面板上的疲劳细节应力降幅达41%~85%,其中,钢面板-U肋焊缝细节应力降幅为85%,顶部过焊孔处细节应力降幅为44%,而横隔板与U肋交叉部位细节应力降幅为41%,表明UHPC加固薄层有效提高了钢桥面的局部抗弯刚度,从而降低了车辆荷载作用下钢桥面的应力水平. 此外,得到了钢桥面上不同疲劳细节的应力响应线,结果表明,各疲劳细节的应力响应因测点位置不同而存在一定差异. 顶部过焊孔处细节横桥向压应力响应范围较小,而拉应力响应范围较大;面板及顶部过焊孔处细节的纵向应力响应线较短,而U肋-横隔板连接处细节的应力在3道横隔板或横肋范围内仍保持较高水平.  相似文献   

2.
目的以港珠澳大桥钢箱梁为例,在面板上增加一层超高性能混凝土形成钢-UHPC组合桥面板,分析超高性能混凝土层对钢桥面板各细节疲劳性能的影响.方法利用有限元软件ABAQUS建立带UHPC铺装层和不带铺装层的局部钢箱梁节段模型.结果对于加了UHPC铺装层的正交异性钢桥面板,纵肋与盖板连接处盖板纵向处的最不利细节横向位置及对应的最不利横向加载点均未发生变化;纵肋与盖板连接处纵肋纵向处、纵肋与横隔板连接处纵肋腹板处和纵肋与横隔板连接处横隔板腹板处的最不利细节横向位置未发生变化,但其对应的最不利横向加载点发生变化;横隔板腹板切口自由边和纵肋下缘对接焊缝处的最不利细节横向位置及对应的最不利横向加载位置均发生了变化.结论 UHPC层大幅度增加了钢桥面板的刚度,进而大大降低了各疲劳细节的应力幅水平,减少了各细节发生疲劳开裂的几率.  相似文献   

3.
从疲劳受力特征角度分析钢桥面板U肋对接焊缝设置位置的合理性.建立正交异性钢桥面板局部有限元模型,施加移动车轮荷载,确定U肋对接焊缝位置对该细节作用范围的影响,计算U肋对接焊缝上典型部位的纵向应力分布、横向应力幅变化,对比不同U肋对接焊缝位置下的疲劳应力特征.结果表明:不同U肋对接焊缝位置的影响范围一致,但疲劳应力特征显著不同:当U肋对接焊缝与横隔板之间距离的增加时,应力幅增加,且拉应力作用范围明显扩大,同时应力比发生了显著的改变.U肋对接焊缝布置在靠近横隔板一定范围内时,其抗疲劳性能相对于布置在两横隔板中间位置时更好.  相似文献   

4.
正交异性钢桥面具有轻质、高性能、施工便捷等应用优势,但其构造复杂且多采用焊接工艺,在反复交变车辆轮载作用下疲劳开裂问题突出。其中,顶板与纵肋连接焊缝(简称顶板-纵肋焊缝)和纵肋与橫肋连接焊缝(简称纵肋-橫肋焊缝)是两类最突出和最具代表性的构造细节。本文采用名义应力法和三种常用热点应力法,在充分考虑交通量对荷载修正的基础上,对上述两类钢桥面典型构造细节开展了精细化有限元分析,确定疲劳应力幅,并进行疲劳检算。通过分析和对比各疲劳评价方法,提出适用于各类构造细节的计算方法。分析结果表明,分析顶板-纵肋构造细节和纵肋-橫肋焊趾截止处纵肋腹板竖向开裂推荐采用表面线性外推方法(Linear Surface Extropolation, LSE)方法,分析纵肋-橫肋焊趾截止处纵肋腹板横向开裂推荐采用Dong方法。研究结果可为正交异性钢桥面的评估、设计和应用提供参考。  相似文献   

5.
U肋带内隔板钢桥面疲劳性能研究   总被引:3,自引:0,他引:3  
针对正交异性铁路钢桥面构造细节,开展U肋钢桥面疲劳性能研究,进行了两个足尺钢桥面构件的静载和高周疲劳承载试验,其中试件DECK1纵肋无内隔板,试件DECK2在横梁腹板处纵肋内设置内隔板.试验研究结果表明:纵肋内隔板可有效改善纵肋腹板和横梁帽孔细节部位的受力,提高钢桥面的疲劳强度;与横梁帽孔交汇处的纵肋腹板为疲劳裂纹易发处,两个构件均在此处出现水平向疲劳裂纹;采用有限元计算模型,分析研究了纵肋内增加内隔板对钢桥面受力的影响,计算结果与试验结果吻合.  相似文献   

6.
针对正交异性钢桥面板存在的桥面铺装破损及钢桥面疲劳开裂这一系列问题,以长期被该病害困扰的天津海河大桥为研究对象,分析此类病害的分布特征及产生机理;根据病害形成的原因提出采用超高性能混凝土铺装层(UHPC)与钢桥面通过剪力钉形成组合结构的加固方法,并将该方法首次应用于大跨径斜拉桥的加固;基于有限元计算和加固前后实桥比对试验,对UHPC层及桥面板关键部位应力情况进行分析,并连续2年对加固后桥梁的状况进行监测。研究结果表明:桥梁病害产生的主要原因是自身刚度不足,在重载车辆的长期作用下出现疲劳开裂;采用UHPC铺装加固后,钢桥面转变成钢-UHPC组合桥面,可大幅度提高桥面板整体刚度,其受力状态得到明显改善,钢箱梁U肋、横隔板、顶板在标准车荷载下的应力分别降低52.7%、39.2%、28.3%,UHPC铺装加固能有效抑制疲劳裂缝的产生和发展,UHPC材料的抗拉强度能满足活载作用下最大拉应力的要求;在重载交通的运营状况下桥面铺装依旧完好,钢箱梁无新增裂缝。采用UHPC铺装加固正交异性钢桥面板在改善其受力状况方面具备优越性和技术可行性。  相似文献   

7.
重庆两江大桥正交异性钢桥面板疲劳性能试验研究   总被引:1,自引:0,他引:1  
为评估重庆两江大桥正交异性钢桥面板双向荷载下的疲劳性能,对由盖板、板肋和横隔板组成的箱形正交异性钢桥面板模型进行疲劳试验研究和有限元分析.采用应力等效方法,板肋与横隔板交叉细节部分采用1∶1足尺模型,横隔板开孔分别采用苹果形和钥匙形,面内和面外双向疲劳加载完成正交异性板结构设计寿命期及超长服役期的等效实桥疲劳应力幅作用下2 000万次疲劳试验.有限元值和实测值较吻合.在疲劳试验基础上,讨论横隔板开孔边缘、纵肋与横隔板焊接以及纵肋与盖板焊接3个关键部位的疲劳性能.研究结果表明:双向荷载作用下横隔板产生面外弯曲变形,易导致面外疲劳;正交异性钢桥面板构造未发现裂纹,疲劳寿命远超过设计寿命期.根据欧洲规范的疲劳等级分类检算,其疲劳强度满足使用要求.  相似文献   

8.
目的对正交异性钢桥面板U肋-顶板连接焊缝的疲劳性能的分析方法进行系统研究,探讨有限元模型中关注细节附近网格划分大小以及疲劳荷载的加载方式对关注细节应力提取结果的影响,确定U肋-顶板连接焊缝细节的应力幅分析过程.方法应用有限元软件ABAQUS建立了局部的钢箱梁节段模型,利用壳单元对U肋-顶板连接焊缝细节进行疲劳分析,与实体单元的分析结果差别不大.结果横向加载分析时,将疲劳荷载布置于U肋正上方、U肋间和U肋腹板上方的加载方式既简化了加载步骤,又能得到细节的实际最不利荷载位置;纵向加载分析时,加载区网格大小不大于50 mm,荷载步大小不大于100 mm时可以得到比较精确的结果;车轮位置与纵肋-顶板连接焊缝横桥向距离大于1 500 mm,或纵桥向距离大于1 500 mm时,对焊缝的影响可以忽略.结论对于U肋-顶板连接焊缝细节应力幅分析过程为:确定各个细节应力最大值纵向加载点位置;在该纵向位置进行横向加载确定细节的最不利横向位置及对应的最不利加载位置;在最不利横向加载位置进行纵向加载得到最不利细节的纵向应力历程曲线,通过应力历程曲线计算该细节的应力幅.  相似文献   

9.
针对车轮荷载作用下钢箱梁的疲劳构造细节等级评定问题,基于应力影响线,研究钢箱梁9种疲劳构造细节的局部疲劳应力。根据等效损伤原理对最大应力幅进行修正,并以此为依据划分钢箱梁疲劳构造细节。结果表明:车轮荷载对钢箱梁9种疲劳构造细节的应力影响范围均较小,横隔板与顶板、纵肋相交处的应力影响范围为横隔板间距;顶板与纵肋相交处、纵肋对接处以及顶板对接处,应力影响范围为横隔板间距的1/2。钢箱梁横隔板与纵肋相交处的修正等效应力幅最大,纵肋对接处的修正等效应力幅最小。考虑受力和施工质量,钢箱梁疲劳构造细节可划分为5个疲劳应力等级,并给出9种疲劳构造细节对应的等级。  相似文献   

10.
为了研究正交异性钢桥面板U肋-横隔板的连接部位的疲劳问题,基于扩展有限元方法分析典型疲劳裂纹的扩展机理,并引入U肋-横隔板焊缝的残余应力,分析残余应力对疲劳裂纹扩展的影响。研究结果表明:萌生于横隔板开孔处的疲劳裂纹未考虑残余应力时不会扩展,加入残余应力后会改变裂纹的应力状态,裂尖应力可以驱动横隔板开孔处的裂纹扩展,裂纹扩展类型为Ⅰ型裂纹;萌生于U肋焊趾处的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ复合型裂纹,残余应力会影响裂纹扩展角度;对于萌生于横隔板焊趾处的裂纹,相比于不考虑残余应力的情况,考虑残余应力的裂纹扩展规律与实桥开裂规律相符,说明对于焊缝疲劳裂纹,在疲劳评估时应考虑焊接过程中残余应力对评估结果的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号