首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在某个群同构~$\alpha$~(其中~$\alpha(\widetilde{S}) =
\widetilde{S}$)~下的固定点集合
能被看作是仿射~Weyl~群~($\widetilde{C}_n,S$). 那么加权的~Coxeter~群\
($\widetilde{C}_n,\widetilde{\ell}$)的左和双边胞腔($\widetilde{\ell}$
是仿射~Weyl~群~$\widetilde{A}_{2n}$~的长度函数),
就能通过研究仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在群同构~$\alpha$~下的固定点集合而给出一个清晰的划分.
因此给出了加权的~Coxeter~群~($\widetilde{C}_n,\widetilde{\ell}$)
对应于划分\ $\textbf{k}\textbf{1}^{\textbf{2n+1-k}}$~和~$(2n-1,2)$
的所有左胞腔的清晰刻画, 这里对所有的~$1\leqslant k \leqslant 2n+1$.  相似文献   

2.
一类高阶微分方程的复振荡   总被引:1,自引:0,他引:1  
研究了微分方程 $ f^{(k)}+H_{k-1}(z)f^{(k-1)}+\cdots+H_0(z)f=F(z) $ 解的增长率,其中\\$H_j(z)=A_j(z)\mathrm{e}^{P_j(z)}(j=0,1,\cdots,k-1), A_j(z),F(z)$是整函数,$\sigma(A_j)  相似文献   

3.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

4.
基于值分布和正规族理论以及高等代数相关知识,研究了全纯曲线族及其导曲线分担处于$ t $次一般位置的超平面的正规定则。设$ \mathcal{F} $是一族从区域$ D \subset \mathbb{C} $到${\mathbb{P}}^{N}(\mathbb{C})$的全纯曲线,${H_\ell } = \rhbr \left\{ {{\bm{x}} \in {\mathbb{P}^N}(\mathbb{C}):} \right.\left. {\left\langle {{\bm{x}},{{\bm{\alpha}} _\ell }} \right\rangle = {\text{0}}} \right\}$是$ {\mathbb{P}^N}(\mathbb{C}) $中处于$ t $次一般位置的超平面,${{\bm{\alpha}} _\ell } = {\left( {{a_{\ell 0}},{a_{\ell 1}}, \cdots ,{a_{\ell N}}} \right)^{\text{T}}},{\text{ }}\ell = 1,2, \cdots ,3t + 1$,$ {H_0} = \left\{ {{x_0} = {\text{0}}} \right\} $,$t\geqslant N$。假定对任意的$ f \in \mathcal{F} $满足条件:若$ f(z) \in {H_\ell } $,则$ \nabla f(z) \in {H_\ell } $,$ \ell = 1,2, \cdots ,3t + 1 $;若$f(z) \in \displaystyle \bigcup\limits_{\ell = 1}^{3t + 1} {{H_\ell }}$,则$\dfrac{\left|\langle f(z),{H}_{0}\rangle \right|}{\Vert f(z)\Vert \cdot \Vert {H}_{0}\Vert }\geqslant\delta$,其中,$ \delta \in \left(0,1\right) $且为常数。那么,$ \mathcal{F} $在$ D $上正规。对于$ N = 3 $,$ t = 3,4,5 $的特殊情形,本文有效降低了所分担超平面的个数。  相似文献   

5.
引入了一个定义在单位圆$\mathcal{U}=\{z\in\mathbb{C}:|z|1 \}$内规范化的解析函数类$\mathscr{A}$上的积分算子$J_{\gamma_1,\cdots,\gamma_n,\beta}(z)$, 利用著名的Becker单叶性判别法, Schwarz引理和Caratheodory不等式, 得到了这个积分算子在单位圆内单叶的3个充分条件. 即当$f_{j}(z)(j=1,2,\cdots,n)$及参数$\gamma_{1},\cdots,\gamma_{n},\beta$满足一定条件时, 积分算子$J_{\gamma_1,\cdots,\gamma_n,\beta}(z)$ 在单位圆内是单叶的.  相似文献   

6.
研究了微分方程~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=0$和 ~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=R_{1}(\mathrm{e}^{z})+R_{2}(\mathrm{e}^{-z})$~的解以及它们的一阶导数与小函数的关系, 其中~$P_{j}(z)$~,~$Q_{j}(z)$~$(j=0,1,2,\cdots,k-1)$~和~$R_{i}(z)(i=1,2)$~是关于~z~的多项式.  相似文献   

7.
研究了关于$k$-折对称点的近于凸函数和拟凸函数子类的邻域。对于 ${\mathcal S_{s,\ n}^{(k)}}[A, B]$ 或者 ${\mathcal C_{s,\ n}^{(k)}}[A, B]$中的函数$f$, 得到了使得所有函数$g\in{\mathcal N_{\delta}}(f)$包含在 ${\mathcal S_{s,\ n}^{(k)}}[A, B]$内的充分条件,且 $\delta$ 是最好的可能。  相似文献   

8.
设$d,\ m$ 与 $n$ 均为正整数. 在1915年, Theisinger证明当$n\ge 2$时,$n$次调和和 $\sum_{k=1}^n\frac{1}{k}$不是一个整数. 在1946年,Erd\H{o}s和Niven 证明仅有有限多个$n$, 使得关于$1/m, 1/(m+d),..., 1/(m+nd)$ 的一个或多个初等对称函数是整数.在2015年, Wang 和 Hong 证明当 $n\ge 2$ 时,$1,1/3,...,1/(2n-1)$ 的所有初等对称函数均非整数.在本文中, 我们证明如下结果成立: 如果$n\ge 2$为正整数, 那么对任意$n$个正整数 $s_0,..., s_{n-1}$, 关于$1,1/3^{s_{1}},...,1/(2n-1)^{s_{n-1}}$的第二类初等对称函数 $$\sum\limits_{0\le i相似文献   

9.
设$G$是无限循环群被有限生成Abel群的中心扩张, $T$是$G$的中心$\zeta G$的挠子群. 如果$T$的阶与$\zeta G/(G''\oplus T)$的挠子群的阶互素, 那么 群$G$可分解为$G=S\times F\times T$, 其中 $$ S=\left\{\left( \begin{array}{cccccc} 1&d_1\alpha_{1}&d_2\alpha_{2}&\cdots&d_r\alpha_{r}&\alpha_{r+1}\0&1&0&\cdots&0&\alpha_{r+2}\\vdots&\vdots&\vdots& &\vdots&\vdots\0&0&0&\cdots&0&\alpha_{2r}\0&0&0&\cdots&1&\alpha_{2r+1}\0&0&0&\cdots&0&1 \end{array} \right)\left| \begin{aligned} \\\alpha_{j}\in \mathbb{Z} \\~\ \end{aligned} \right. \right\}, $$ 这里$d_i$都是正整数, 满足$d_1\mid d_2\mid \cdots \mid d_r$, $F$是秩为$s$的自由Abel群, $T$是有限Abel群, $T=\mathbb{Z}_{e_1}\oplus \mathbb{Z}_{e_2}\oplus\cdots\oplus\mathbb{Z}_{e_t}$, $e_1>1$, 满足$e_1\mid e_2\mid \cdots \mid e_t$, 并且$(d_1, e_t)=1$. 进一步, $(d_1, d_2,\cdots , d_r; s;e_1,e_2,\cdots , e_t)$ 是群$G$的同构不变量, 即若群$H$也是无限循环群被有限生成Abel群的中心扩张, $T_{H}$是$\zeta H$的挠子群. 如果$T_{H}$的阶与$\zeta H/(H''\oplus T_{H})$的挠子群的阶互素, 那么$G$同构于$H$的充要条件是它们有相同的不变量. 显然, 这个结果涵盖了有限生成Abel群的结构定理.  相似文献   

10.
研究了非齐次线性微分方程~$f^{(k)}+A_{k-1}f^{(k-1)}+\cdots+A_df^{(d)}+\cdots+A_0f=F$~的解的增长性及零点,其中~$A_j(j=0,1,\cdots,k-1)$~为有限级整函数, $F$~为无穷级整函数,当存在~$A_d(0 \leq d \leq {k-1})$~满足某些特殊条件时,~得到了上述非齐次线性微分方程解的性质.  相似文献   

11.
仿射Weyl群n可以看做仿射Weyl群2n在某个群自同构下的固定点集合.通过研究2n在这个群自同构下的固定点集合,可以给出加权的Coxeter群n对应于划分2n1的所有胞腔的清晰刻画.  相似文献   

12.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

13.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

14.
本文运用双度量空间中的广义Krasnoselskii’s压缩不动点定理研究了二阶非线性积分边值问题u″+a(t)f(t,u(t),u′(t))=0,t∈(0,1),u(0)=0,u(1)=α∫~η_0u(s)ds正解的存在唯一性,其中■:[0,1]×[0,∞)×R→[0,∞)连续,且当t_0∈[η,1]时a(t_0)0.  相似文献   

15.
本文考虑二阶离散左定Sturm-Liouville (S-L)问题■的谱,这里[1,T]_Z={1,2,…,T},λ是谱参数,r(t)在[1,T]_Z上变号.本文得到了该问题特征值的存在性,交错性以及对应特征函数的振荡性.  相似文献   

16.
本文考虑了单位球~$\Omega=\{x\in\mathbb{R}^N:~|x|<1\}$~上含梯度项的椭圆边值问题 \[ \begin{cases} -\triangle u=f(|x|,u,|\nabla u|),\quad x\in \Omega,\u|_{\partial\Omega}=0\\end{cases} \] 正径向解的存在性,~其中~$N\geq2$,~$f:[0,1]\times\mathbb{R}^{+}\times\mathbb{R}^{+}\rightarrow\mathbb{R^{+}}$~连续.~在~$f(r,\xi,\eta)$~满足一些不等式条件下,~应用~Leray-Schauder~不动点定理,~获得了该问题正径向解的存在性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号