首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了提高BP神经网络预测模型对水泥强度值的预测精度,通过结合BP神经网络与遗传算法各自的优势,提出一种采用遗传算法优化的BP神经网络的水泥强度预测算法.利用遗传算法具有的全局优化搜索能力优化BP神经网络的各层节点连接权值与阈值,训练BP神经网络预测模型以求得最优解,并将训练以外的样本数据用于模型的有效性验证.仿真结果表明,该算法对水泥强度值预测具有较高的预测精度,同时可缩短网络收敛时间.  相似文献   

2.
采用人工神经网络技术,利用改进的BP算法Levenberg-Marquardt优化学习方法,以分子连接性指数等作为分子描述参数,对烷烃在各种溶剂中的无限稀释活度系数进行预测.计算值与实验值进行比较,表明两者结合具有良好的预测效果.  相似文献   

3.
采用人工神经网络技术,利用改进的BP算法:Levenberg-Marquardt优化学习方法,以分子连接性指数等作为分子描述参数,对烷烃在各种溶剂中的无限稀释活度系数进行预测。计算值与实验值进行比较,表明两者结合具有良好的预测效果。  相似文献   

4.
为了用BP神经网络更准确地预测煤与瓦斯突出危险性,将免疫算法中基于繁殖概率的抗体多样性保持机制引入量子遗传算法(QGA),提出量子免疫遗传算法(QIGA)优化神经网络模型QIGA-BP。模型采用QIGA分别对神经网络的隐含层和连接权值进行全局寻优,以此提高BP网络的搜索效率和泛化能力。以平均影响值分析法筛选的煤与瓦斯突出显著变量作为BP网络的最佳输入参数,分别用QIGA-BP,QGA-BP,免疫遗传优化BP模型和传统BP模型对突出煤层工作面的实例数据进行预测。结果表明,QIGA在BP网络优化过程中具有更好的优化性能,用QIGA-BP模型预测工作面突出危险性具有更好的预测能力和更高的预测准确率。  相似文献   

5.
三元合金及金属间化合物中各组分活度系数的计算   总被引:1,自引:0,他引:1  
根据Kohler三元溶体模型和Miedema二元系统生成热模型,建立了计算三元合金及金属化合物中各组分活度系数的方程。计算了三元合金Ti-5Al-2.5Sn,Ti-6Al-4V及不同温度下金属间化合物TiAl,Ti3Al和Ti2AlNb中各组分的活度系数。并与有关实验值进行了对比.计算结果表明此公式的计算结果与实验值吻合较好,解决了固态二元、三元合金及金属间化合物中各组分的活度系数的计算问题,Ti与A1活度系数均小于1,对Raoultl定律产生负偏差。根据所计算的活度系数和活度值,预测了SiC/TiAl,SiC/Ti3Al和SiC/Ti2AlNb复合材料的界面反应,表明SiC/Ti3Al界面反应较为严重。  相似文献   

6.
三元合金中组分活度系数预测模型   总被引:1,自引:0,他引:1  
利用Miedema二元系统生成热模型和Kohler模型,建立计算三元合金各组分的活度系数模型,并利用该模型计算三元液态体系Cu-Sb-Zn、Cu-Sn-Zn、Ag-Cu-Ge、Al-Fe-Si和三元固态体系C-Fe-Co及C-Fe-Ni等组分的活度或活度系数,同时与有关实验值进行对比.结果表明,组分活度的计算值与实验值具有较好一致性.该模型仅依靠合金元素本身的物理参数,不仅适用于液态合金,对固态合金的组分活度也具有一定预测作用.  相似文献   

7.
该文提出改进的PSO-BP算法在洪水预测应用中建立预测模型.以BP神经网络为基础,提取观测站往年平均径流量作为洪水属性.采用改进的PSO-BP算法对神经网络的各个参数进行优化,最后建立模型应用于流域观测站的洪水预报模型,叙述了PSO粒子群算法和BP神经网络算法,详细阐述粒子群算法优化BP神经网络的权值和阈值,得出最优的BP神经网络预测适应度值.通过实验仿真对比,结果表明此方法预测结果比BP神经网络算法和混沌径向基神经网络模型算法精度更高,提高了预测的效率.  相似文献   

8.
为了提高拉曼光谱定量分析模型的准确性以及稳健性,提出了一种新的样本选择算法——KM法.实验中以40组葡萄酒光谱为分析对象,将KM法与传统的RS,KS,SPXY样本选择算法相比较.实验结果表明: KM法获得的|RMSEP-RMSEC|要优于其他三种方法,剩余预测偏差(RPD)存在显著性差异,说明KM法具有很好的预测准确度.同时,针对BP神经网络易陷入局部极值的问题,将粒子群优化算法用于优化人工神经网络的参数(PSO-ANN),通过与遗传算法、人工鱼群算法及混合蛙跳算法比较,发现PSO-ANN较之于其他三种方法,能够提高BP神经网络泛化性能,具有收敛速度快、稳健性强及预测精度高等优势.  相似文献   

9.
评价了几种三元系几何模型,利用统一溶液模型推导出新的预测活度相互作用系数公式,通过该计算值与实验值的对比,对几种活度相互作用系数模型的效果进行了讨论。  相似文献   

10.
《河南科学》2016,(6):887-891
应用基于遗传算法的BP神经网络构建马铃薯晚疫病预测模型,对原始样本进行归一化处理,应用遗传算法优化BP神经网络的结构、初始权值、阀值,通过BP神经网络训练构建马铃薯晚疫病预测模型,利用遗传算法来改善BP神经网络算法本身的缺陷,提高学习精度,预测准确度.仿真结果表明,GA-BP神经网络模型预测准确度较高,误差率较低,稳定性较好.实践证明,将GA-BP神经网络算法应用于马铃薯晚疫病预测模型中是可行的,能够实现晚疫病流行程度的快速预测.  相似文献   

11.
为了提取微通道的结构特征参数与阻尼系数的映射关系,采用三层前馈神经网络建立了微通道阻尼特征模型。同时,为了提高模型训练的效率,提出了PSE-BP算法。以等截面的矩形截面直线形微通道为例,利用数值仿真产生训练样本,对模型进行了训练,对训练结果进行了实验验证。相比BP算法,PSE-BP算法的训练效率提高了20倍以上,训练与仿真结果吻合较好。PSE-BP算法训练的理论计算与实验结果的平均偏差为5.2%,BP算法训练的理论计算与实验结果的平均偏差为5.8%,理论与实验曲线吻合较好。  相似文献   

12.
针对传统BP神经网络学习过程中学习率选取过大导致振荡的问题, 提出一种新的BP神经网络PID(比例-积分-微分)参数自适应整定算法. 采用BP神经网络对PID参数进行自适应调节和优化, 并利用动量因子优化学习率和增加动量项抑制BP神经网络训练中出现的振荡现象, 以加快收敛速度. 实验结果表明, 该算法有效缓解了振荡现象, 加快了算法的收敛速度.  相似文献   

13.
针对传统BP神经网络学习过程中学习率选取过大导致振荡的问题, 提出一种新的BP神经网络PID(比例-积分-微分)参数自适应整定算法. 采用BP神经网络对PID参数进行自适应调节和优化, 并利用动量因子优化学习率和增加动量项抑制BP神经网络训练中出现的振荡现象, 以加快收敛速度. 实验结果表明, 该算法有效缓解了振荡现象, 加快了算法的收敛速度.  相似文献   

14.
新建隧道下穿既有运营地铁线施工过程中极易对既有运营地铁线产生不利影响,而广泛采用的超前预注浆尚处于以经验性选取注浆施工参数的阶段,导致工程事故频发。为此,首先以开挖段地层物性参数、地层位移变化值作为输入层,注浆施工参数为输出层,构建了基于BP(back propagation)神经网络的注浆施工参数预测模型;其次,以MAPE(mean absolute percentage error)作为预测精度评价指标,采取试算法对BP神经模型参数(隐含层节点数目、学习率)进行了探讨;最后,将提出的BP神经网络用于指导工程实践。研究结果表明:当BP神经网络预测模型隐含层节点数为9、学习率为0.01、训练次数为20 000以及精度目标值为1×10-4时,模型适用性评价显示预测值与监测值之间最大相对误差为19,平均相对误差均低于13,说明提出的BP神经网络预测模型可行;进一步的工程应用结果表明:采用预测的注浆施工参数进行注浆后掌子面稳定、开挖过程中未发生隧道塌方等事故,满足相关规范要求。研究成果也可在隧道下穿其他结构或建筑物灾害防控注浆工程中得到推广应用。  相似文献   

15.
蒋华伟  郭陶  杨震 《科学技术与工程》2021,21(21):8951-8956
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型.采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型.为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性.  相似文献   

16.
基于BP神经网络理论,利用实验数据对连接权系数和结点阈值自学习确定,从而建立BP神经网络模型,采用BP神经网络模型比回归方程形式数学模型具有更小的方差,能够寻找到最优的工艺条件.  相似文献   

17.
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.  相似文献   

18.
基于神经网络原理,建立预测泡沫混凝土性能的BP神经网络模型,期望通过输入配合比主要参数,得到泡沫混凝土强度及导热性能的预测结果。将实验数据分为训练组和对照组,对训练组进行非线性拟合,若拟合结果满足误差精度则模型建立完毕;通过拟合结果与对照组的比较,可验证模型预测精度。结果表明,BP神经网络模型能够准确拟合实验数据,利用其泛化能力进行预测的结果与对照组的误差小于8%,该模型具有很高的预测精度。  相似文献   

19.
利用人工神经网络的BP算法,建立了碳/陶瓷复合材料性能与多组分掺杂含量之间的预测模型.模型由输入层、隐含层和输出层3层神经元组成,用以模拟人脑的结构.以掺杂物的质量分数为输入参数,经石墨化后测得的复合材料的电阻率和抗折强度为输出参数.选取了30组实验数据作为学习样本,任意的7组数据作为"未知样品"对网络进行验证.结果表明,实验值和预测值相比电阻率的最大误差不超过8%,抗折强度的最大误差不超过12%.所建的网络可为碳/陶瓷复合材料设计提供理论指导.  相似文献   

20.
基于野韭菜挥发性成分的色谱保留指数神经网络预测   总被引:1,自引:0,他引:1  
为研究野韭菜挥发性成分的性质,预测其色谱保留指数,运用 MATLAB相关自编程序计算得到了野韭菜挥发性成分的分子形状指数和电性拓扑态指数,将这两类参数作为分子结构描述参数,借助多元逐步回归法优化筛选了其中结构参数^2K、^3K、^4K、I2和 I6,建立了野韭菜挥发性成分色谱保留指数的 QSRR模型,相关系数为 0963,通过对模型的稳定性和预测能力进行检验,检验的相关系数 r基本也稳定在 0963左右。用这 5个筛选出的结构参数作为人工神经网络的输入层参数,采用 5 2 1的网络神经结构,利用 BP算法建构神经网络模型,总相关系数达到 0996的优级相关,利用此模型计算得到的预测值与实验值吻合度较为理想,相对平均误差仅为 167%,结果显示 BP神经网络所得结果优于多元线性回归方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号