首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
针对工艺参数与高温合金雾化粉末粒径间的复杂联系,采用ANSYS-Fluent数值模拟GH4169高温合金真空感应气雾化(VIGA)制粉过程中液滴的破碎行为,分析了雾化气压对金属熔体雾化过程和粉末粒度分布的影响.结果表明:一次雾化过程的带状液膜厚度和液滴面积逐渐减小;二次雾化对熔体的破碎作用逐渐增强,雾化所得粉末粒径越来越细小,中位径从81.10 μm减小到69.80,64.77,52.30,41.80μm;细粉收得率逐渐提高,由1.72%提高到12.62%,18.89%,56.50%,71.54%.  相似文献   

2.
对微米级液滴撞击低温球形表面的动态行为进行了可视化实验.研究了液滴直径、球面温度等因素对微米级液滴撞击过程的影响及液滴撞击直径3 mm和5 mm金属钢球的冻结过程.当实验球面温度分别为–20℃和–30℃时,液滴撞击低温金属钢球表面时液滴铺展后迅速回缩成塔形状然后缓慢的铺展直至稳定状态,与常温状态下相比,液滴形态没有明显的振荡过程.结果表明:撞击速度越大,液滴具有的初始动能越大,液膜最大铺展弧长越大.随着载体颗粒直径的增加,液膜最大铺展弧长也随之增加,液膜的厚度却随载体颗粒直径的增加而减小;随着液滴直径的增加,液膜铺展弧长及液膜厚度都随之增加.通过实验数据统计分析可知,环境温度的显著水平最高,然后依次为液滴直径、载体颗粒直径.  相似文献   

3.
本文在理论上分析了由作者发展起来的一种两步雾化——快速凝固制粉技术,研究了某些工艺参数对铝锂合金粉末制备过程的影响。在建立热传导模型的基础上,计算了熔体液滴与冷却介质之间界面上的传热系数,并由牛顿冷却计算出了冷却速度与粉末颗粒大小之间的关系。结果表明,冷却剂不同得到的冷却速度不同。对于5~80μm的粉末颗粒其凝固时的冷却速度范围为10~4~10~7K/s。此外,本文还研究了铝钾合金粉末的形貌、颗粒大小及其分布和粉末的微观结构。  相似文献   

4.
通过计算流体力学软件数值模拟和实验相结合的方法,以高温合金雾化过程中气、液、固三相的交互作用机制为研究对象,采用欧拉-拉格朗日法的VOF(volume of fluid)多相流模型和DPM(discrete phase model) 离散相方法,研究了喷射夹角对熔体主雾化和二次雾化过程TAB(Taylor analogy breakup)破碎过程和粒度分布的影响,并与同步实验结果进行了对比.研究结果表明,随着喷射夹角的增大,回流区面积逐渐减小.金属熔体的初次破碎形态呈“倒喷泉状→伞状”,初次液滴的尺寸为0.3~0.9mm.初次破碎液滴的气体韦伯数(We)为10~90,随喷射夹角的增大,粉末的平均粒径逐渐降低,喷射夹角为36°时,实验制备的粉末粒径与数值模拟得到的粉末粒径基本一致,表明了数值模拟合金雾化破碎过程的合理性.  相似文献   

5.
介绍了利用机械-物理固相效应制备纳米Ni粉,并用X射线衍射、透射电镜技术检测了它的微观结构,属于面心立方的金属Ni,粉末呈单晶和多晶簇团共存。这种制备纳米粉末的装置简便,易于建造,投资少,可用于金属、氧化物纳米粉末的工业生产。  相似文献   

6.
室温液态金属因低黏、超高表面张力(约为水的10倍)及高密度等属性,蕴藏着新奇的物理景象.本文发现了一种金属液滴的相互作用机制:震荡性融合与接触弹射现象.实验借助注射泵生成金属液滴,并采用高速摄像仪记录液滴间的接触融合过程.基于图像处理的量化结果表明,金属液滴由于具有较小Oh数,表面张力在双液滴的接触性震荡融合过程中起主导作用;金属液滴表面的毛细波传播速度随其半径增大而减小;造成金属液滴出现接触弹射现象的动力学机制部分来源于表面张力波和双电层效应.这一基础认识丰富了液滴流体动力学的范畴,同时也为金属液滴的生成、操控乃至流体特性的刻画提供了理论依据.  相似文献   

7.
为了研究液滴与球形颗粒的碰撞规律,建立了正确反映液滴与颗粒间相互碰撞的物理模型.利用所建模型模拟了液滴与颗粒的动态碰撞过程,进而对液滴半径铺展系数及液膜中心高度系数进行分析,研究了液滴与颗粒间的撞击速度、湿润角、粒径比等参数对碰撞结果的影响.结果表明:在一定条件下,撞击速度的提高会增大液滴的最大铺展半径系数,当撞击速度为0.4 m·s-1时,液滴完全反弹,当撞击速度提高到1.4 m·s-1时,液滴发生破碎;当速度和粒径比不变时,湿润角与最大液膜中心高度系数成正比;在湿润角不大于90°时,粒径比越大,液滴包覆的概率就越大.  相似文献   

8.
在对汽水分离装置中液滴运动过程中的相变现象描述和物理机理解释的基础上,结合压力变化条件下静止单液滴相变模型的基础和液滴运动模型,建立了单液滴运动相变模型。该模型给出了液滴运动过程中,由于流动阻力和局部结构改变造成压力降低,打破汽液相平衡而造成液滴的快速蒸发和汽液相平衡蒸发2个阶段的机理解释和数学表述,与已有结果和理论分析结果均较符合。该模型可以用于液滴在重力分离空间、旋风和旋叶分离器、波纹板分离器等汽水分离装置中运动相变过程中的分离效率计算,衡量液滴相变对汽水分离性能的影响,指导分离装置结构的优化设计。  相似文献   

9.
超微颗粒材料的应用与展望   总被引:1,自引:0,他引:1  
超微颗粒的尺度介于分子、原子与块状材料之间,通常泛指1~1000nm范围内的微小固体粉末,包括金属、非金属、有机、无机和生物等多种粉末材料。  相似文献   

10.
为了提升喷雾冷却等液滴蒸发应用过程的瞬态蒸发速率,该文探究纳米颗粒的加入对液滴瞬态蒸发特性的影响规律。通过可视化实验研究了水基CuO、Al_2O_3纳米流体液滴在加热铜基板上的瞬态蒸发速率,测量了液滴蒸发过程中接触角、接触半径等形态参数随时间变化关系,并分析了纳米颗粒质量分数、基板加热温度对纳米流体液滴瞬态蒸发速率的影响规律。实验结果表明:纳米颗粒的加入有利于提升液滴蒸发速率,当基板温度为45℃时,与纯水液滴瞬态蒸发速率单调递减规律不同,2%质量分数的纳米流体液滴的瞬态蒸发速率随时间呈现先降低后升高的变化规律;在较高基板温度(60℃、75℃)时,纳米颗粒对液滴瞬态蒸发速率提升作用并不是随着颗粒浓度的增加而一直增加。实验发现1%质量分数纳米流体液滴蒸发速率要高于0.1%与2%质量分数液滴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号