首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
研究了胺基磺酸盐水解反应动力学 ,分析了氢离子对水解反应的催化作用以及水解的盐效应 ,在所研究的离子强度范围内 ,胺基磺酸盐的水解反应呈负盐效应。胺基三磺酸钾 ( NTS)水解反应动力学方程为 :dc NTSdt =k NTSc NTSc H+ ,在 30°C~ 67°C、离子强度 I=0 .0 5 mol/L时 ,k NTS=3.5 77×1 0 9e-5.460× 10 4 / RTL/( mol· s) ;胺基二磺酸钾 ( IDS)的水解反应动力学方程为 :- dcIDSdt=k IDSc H+ c IDS,在32°C~ 72°C、离子强度 I=0 .1 0 mol/L时 ,k IDS=1 .40 5× 1 0 17e-1.0 65× 10 5/ RTL/( mol· min) ;胺基一磺酸钾 ( SA)的水解反应动力学方程为 :- dc SAdt=k SAc H+ c SA,在 5 0°C~ 84°C、离子强度 I=0 .0 5 mol/L时 ,k SA=7.964× 1 0 17e-1.2 77× 10 5/ RTL/( mol·min)  相似文献   

2.
运用NMR技术对叔丁基氯在60%丙酮水溶液中的水解动力学机理进行了研究。该水解反应为准一级反应,其速率常数k=(1.34±0.2)×10~(-4)/s,反应的半衰期为τ_(1/2)=k_1~(-1) In2=5284s。  相似文献   

3.
为有效控制桃胶多糖的水解,以桃胶多糖为原料,用DNS法测定其在pH=1及不同水解温度和时间下的单糖的含量,进而计算出水解度. 结果表明桃胶多糖的酸水解属于拟一级反应类型;在70、75、80、85、90、95 ℃反应时其表观反应速率常数分别是1.72×10-5 s-1 、 3.74×10-5 s-1 、 5.77×10-5 s-1 、 9.41×10-5 s-1、 1.45×10-4 s-1、 2.23×10-4 s-1 ,其水解反应的表观活化能是1.03×105 J·mol-1,反应的表观频率因子是9.72×1010. 在实验温度范围内反应速率常数温度的升高而增大,且两者之间的关系符合Arrhenius公式. 总结出桃胶多糖酸水解反应的Arrhenius公式是k=9.72×1010exp(-1.03×105/RT),进而得到水解度为1-1/exp{[9.72×1010exp(-1.03×105/RT)]t}  相似文献   

4.
成型菱镁矿粉矿分解动力学   总被引:1,自引:0,他引:1  
为研究成型菱镁矿粉矿在分解过程中的分解行为机理,利用TG法分析成型菱镁矿粉矿在3,4,5℃/min升温速率下的转化率,并通过Coats-Redfern方程确立成型菱镁矿粉矿热分解动力学三因子。结果表明:成型菱镁矿粉矿分解活化能为96.67 k J/mol,指前因子为4.18×10~5s~(~(-1)),反应机理为三维扩散,由Z-L-T方程控制的三维扩散3D模型为最概然机理函数,动力学微分方程为dα/dt=4.18×10~5exp(-96.67/RT)1.5(1-α)~(4/3)[(1-α)~(-1/3)~(-1)]~(-1)  相似文献   

5.
搅拌反应器是进行气液吸收动力学研究的常用设备。近年来,它广泛地用于吸收剂筛选和化学吸收模型的研究。本文所用的搅拌反应器与Danckwerts和Gillham以前使用过的反也器相似。对搅拌反应器的特性我们采用CO_2-H_2O系统和CO_2-无机盐溶液系统进行校正。获得液相传质系数k(?)与R_e,S_c的关联式如下。K_lL/D=6.81×10~(-2)×R_c~(0.79)×S_c~(0.48)  相似文献   

6.
使用磁钢传动搅拌反应器,在反应温度70—110℃、乙炔压力2 kgf/cm~2和甲醛初始浓度3.3—4.0mol/l的条件下,研究了甲醛水溶液和乙炔在W—1型乙炔铜催化剂上合成丁炔二醇的本征动力学。实验表明,甲醛初始浓度对反应速率有明显的影响。甲醛初始浓度越低,反应速率越大。按並-串联复合反应的经验模型,将实验数据用非线性最小二乘法回归得到的模型表达式如下: r_F=dC_F/dt·V_1/Wcat=2.03×10~2 exp(14024/R_gT)C_F~(1.1) 2.96×10~2 exp(13992/R_gT)C_F~(1.6)C_P~(0.8) r_P=dC_P/dt·V_1/Wact=2.03×10~2 exp (14024/R_gT)C_F~(1.1)-2.96×10~2 exp(13992/R_gT)C_F~(1.6)C_P~(0.8) r_B=dC_B/dt·V_1/Wact=2.96×10~2 exp(13992/R_gT)C_F~(1.6)C_P~(0.8)式中r_E、r_P和r_B分别是甲醛消耗速率、丙炔醇和丁炔二醇生成速率,mol/sec·g,cat。  相似文献   

7.
根据广义数列Fibonacci数列{Gn}的定义和性质,采用初等方法证明了广义Fibonacci数列偶数项和奇数项的有限和■(∑_(k=n)~(mn)1/G_(2k))~(-1)」,■(∑_(k=n)~(mn)1/G_(2k-1))~(-1)」,■(∑_(k=n)~(mn)1/G_(2k)~2)~(-1)」,■(∑_(k=n)~(mn)1/G_(2k-1)~2)~(-1)」,将Fibonacci数列倒数和的结论进行了推广。  相似文献   

8.
本文以恒界面池法研究了HNO3介质中TiAP对Th(Ⅳ)的萃取动力学性质.在一定条件下,考察了萃取时间对萃取率的影响,并测定了搅拌速度、温度、界面积以及各反应物初始浓度对萃取速率的影响.实验结果表明:萃取体系在约6h后达到平衡;搅拌速度(120-180rpm)对萃取速率无显著影响,萃取反应的活化能为23.20kJ/mol,萃取过程为界面反应的混合控制模型.在HNO3介质中,TiAP萃取Th(Ⅳ)的化学反应速率方程为:r=-dcTh(NO3)4/dt=k[Th(NO3)4]1.05[TiAP]1.77[HNO3]0.38,其中,k=1.6×10-2(mol/L)-2.2·s-1.  相似文献   

9.
为研究松脂的氧化反应动力学,采用紫外分光光度法定量测定固态枞酸在聚乙烯膜上的吸光度变化,求出松脂参与氧化反应的反应量,进而研究松脂氧化反应动力学。实验结果表明,松脂的热氧化和光氧化反应动力学均呈现表观一级反应。热氧化反应温度为35、40、45℃时的表观速率常数分别为3.000×10-4、5.000×10-4、1.100×10-3 min-1,反应活化能Ea为105.8 kJ/mol。254 nm紫外灯辐照下,温度为35、40、45℃时,光强度与表观速率常数的关系分别k=1.162×10-4I+2.626×10-4、k=1.248×10-4I+4.588×10-4、k=1.298×10-4I+0.001 1。  相似文献   

10.
本文用热重分析研究了本所新研制的线性端羟基聚氨酯弹性粘合剂,利用作者新编的“热重动力学计算机程序包”,采用Coast—Redfern法,测定了四种样品的热重数据并首次报导了这四种样品在热降解两个阶段的动力学数据。在热降解第一阶段,反应级数n为0.7~1.4,热降解表观活化能E为127.14~135.84KJ/moi.,频率因子A为1.37×10~(12)~14.37×10~(12)秒~(-1)。在热降解第二阶段、反应级数n均为3,E为199.54~218.52KJ/mol,,A为2.99×10~(16)~5.35×10~(17)秒~(-1)。作者分别建立了四种样品在热降解两个阶段中的动力学方程,并估算了它们在不同温度下的使用寿命,建立了三种样品的热寿命经验公式。  相似文献   

11.
降维法快速求解A(n,k)精确公式   总被引:1,自引:0,他引:1  
A(n,k)=∑km=1∑mr=1∑[k/m]-1j=0t(k)m,r,j×nj×s(r,m)×ζnrm,ζm=e2πi/m,s(r,m)=1,gcd(r,m)=10,其他为丢番图方程∑ki=1ixi=n的非负整数解的个数.虽然用解线性方程组的方法可求得A(n,k)的所有系数,然而,该求解过程却非常耗时.本文利用方程(1-x)(1-x2)...(1-xk)=0的相异根的幂可能存在的相等关系,即取适当的正整数g使某些相异根的g次幂相等来实现同类项系数的合并以降低方程的维数,达到提高方程求解速度的目的.  相似文献   

12.
运用薄层色谱扫描技术研究了回流温度时(76℃)1,2,3,4,6-五-O-乙酰基-β-D-吡喃半乳糖的超声溴化反应,通过测定反应液中初始物半乳糖的浓度随超声辐照时间的变化,采用一次法和初速度法分别建立了该反应的反应动力学方程:r=9.348×10-3ρ1(一次法),r0=1.07 8×10-2ρ1,0(初速度法),确认这一反应对初始物半乳糖为一级反应,探讨了可能的反应机理,根据推测的反应机理得到的动力学方程为r=Kρ1,(K=2k1k2ρNBS/k5),与实验结果一致.  相似文献   

13.
设k为大于1的正整数,考虑C×R上的复向量场 Z=α/αZ ikZ~(K-1)Z~k(α/αt) Z=α/αZ-ikZ~(k-1)Z~k 令L_a=-1/2(ZZ ZZ)-α/2[z,z]其中常数a∈C.[,]为交换子(李括号)定理:设α≠±(2m/k 1),m=0,1,2…,(z,t)∈C×R,(W,S)∈C×R,记A=1/2(|z|~(2k) |w|~(2k) i(t-s)),令p=  相似文献   

14.
在不同升温速率条件下,利用同步差示扫描量热法(DSC)/热重法(TG)来研究纳米铝粉的非等温氮化动力学,通过5种积分法和一种微分法对数据进行处理,获得了纳米铝粉非等温氮化的最可机理函数。结果表明,氮化反应的表观活化能和指前因子分别为111.74 k J·mol~(-1)和103.46 s~(-1)。反应机理服从n=3/2的幂函数法则,其动力学方程为dα/dt=10~(3.28)·α~(-1/2)·e~(-13439.9/T)。  相似文献   

15.
本文给出Pythagorean三角形(x,y,z)的一般形态,即x、y、z呈形x=k/4{[(2a_0 d) c_02~(1/2)](1 2~(1/2))~(2n) [(2a_0 d)-c_02~(1/2)](1-2~(1/2))~(2n)-2d}y=k/4{[(2a_0 d) c_02~(1/2)](1 2~(1/2)) [(2a_0十d)-c_02~(1/2)](1-2~(1/2)~(2n) 2d}z=k2~(1/2)/4{[(2a_0 d) c_02~(1/2)](1 2~(1/2))~(2n)-[(2a_0 d)-c_02~(1/2)](1-2~(1/2))~(2n)}其中a_0 、c_0、d、k∈N,n∈N~ =NU{0}且(a_0,a_0 d,c_0)∈M_d.  相似文献   

16.
关于n个正数的k次Hamy平均σ_n(a,k)=1/C_n~k sum from 1≤i1…ik≤n(multiply from j=1 to k a_(ij))~(1/k),利用最值压缩定理,证明了与Hamy平均、算术平均和几何平均有关的一个双向不等式(A_n(a~(1/k)))~(kp)·(G_n(a~(1/k)))~(k(1-p))≤σ_n(a,k)≤qA_n(a)+(1-q)G_n(a),其中q=n-k/n-1和p=n-k/kn-k为最佳,从而得到一个较理想的优化不等式.  相似文献   

17.
表面活性剂MES能促进硫酸对铀的浸出,利于铀资源的回收利用。为了进一步探索表面活性剂MES促进铀浸出的机理,基于液-固多相反应的收缩核模型,通过静态实验研究了表面活性剂协助硫酸对铀废渣中铀浸出的动力学特征。研究结果表明添加MES表观反应速率常数比没有添加的大一个数量级,其中,添加MES的反应速率常数在1.235×10~(-6)~2.726×10~(-6)之间,而没有添加MES的在6.789×10~(-7)~9.55×10~(-7)之间,其表观活化能,添加MES的为29.523 k J/mol,不添加的为12.493 k J/mol,在25~45℃的温度范围内,硫酸对铀的浸出主要受液膜扩散控制。  相似文献   

18.
Fenton-混凝法深度处理垃圾渗滤液的动力学研究   总被引:2,自引:1,他引:1  
以南宁市城南垃圾填埋厂生化处理后的垃圾渗滤液为研究对象,采用Fenton-混凝法对其处理效果进行研究。探讨了Fenton-混凝法对COD、色度及浊度去除率的影响,从而得出该处理方法的最佳工艺条件。并在此基础上对该反应降解COD过程的动力学方程进行分析与讨论。研究结果表明,该反应动力学方程符合二级反应动力学方程,其中k=1.33×1025e(-160/RT)。当反应温度为293 K时,COD降解规律为CODt=(kt+0.003 2+COD0-1)-1,其中k=7×10-5L/(s.moL)。  相似文献   

19.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

20.
研究了2,9-二(n-5,’8’-二氮杂壬烷基)-1,10-邻菲罗啉合铜(Ⅱ)配合物作为水解酶模拟物催化4-硝基苯酚醋酸酯(NA)水解反应动力学.在pH为7.4~9.2范围内配体与铜(Ⅱ)形成了1∶1(配体∶铜离子)配合物.结果表明,催化水解速率对NA及配合物浓度皆呈一级反应,其水解速率方程为v=koTbs[NA]=(koMbsL[ML]T kOH-[OH-] k0 i)[NA],二级反应速率常数kMLH-1在一定范围内随pH值的增加而增加;kMLH-1的最大值和kOH分别为0.131,18.22 mol-1.dm3.s-1,k0为NA的溶剂水解常数,k0=1.26×10-6s-1((25.0±0.1)℃,I=0.10 mol/L KNO3,0.020 mol/L Tris缓冲溶液);kMLH-1值显示该配合物催化活性较高,表明Cu(Ⅱ)配合物中的Cu…OH-是有效的亲核试剂,对底物NA酯的水解有较好的催化作用.同时,依据实验结果提出了催化反应的机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号