首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究替代哈龙的新型清洁灭火剂对民航运输锂离子电池火灾作用特性,基于动压变温实验舱,实验设定了80 kPa,60 kPa和40 kPa的压力环境,使用全氟己酮(Novec1230)、2-溴-3,3,3三氟丙烯(2-BTP)和细水雾进行灭火实验。根据它们的灭火机理,从实验现象,降温效果和一氧化碳浓度三方面分析了三种灭火剂的灭火效果。结果表明,变压条件下Novec1230和2-BTP主要通过化学抑制的机理有效降低锂离子电池火焰中自由基H·和OH·浓度,实现快速灭火;而细水雾的降温和抑制温升效果要明显优于Novec1230;同时灭火效果会随环境压力的下降而增强;在较低环境压力下,2-BTP对于灭锂离子电池火的综合效果最好。  相似文献   

2.
为了更好地进行民用飞机飞行中火灾早期探测和防治,选取典型乘客衣物作为实验试样,在四川广汉(96 kPa)和康定机场(61 kPa)进行燃烧对比实验。测量试样的质量损失、火焰形态、烟密度及烟气成分并计算其变化率,以研究不同环境压力对典型乘客衣物燃烧特性的影响。结果表明:61 kPa下衣物试样的质量损失比等于96 kPa;火焰高度随着压力的减小而增大,蓝色火焰在61 kPa下占火焰高度的比例大于96 kPa;61kpa下的烟气密度变化率要先于96 kPa达到峰值,但其在整个过程中的变化趋势基本相同。61 kPa下乘客衣物燃烧产生CO和CO2的变化趋势与96 kPa下相比有明显的差异。研究发现,压力对衣物材料在不同场景下的燃烧具有显著的影响。  相似文献   

3.
针对锂离子电池航空运输需求不断增大,而低压环境下锂离子电池热失控火焰特性研究甚少的现状,设计了60kPa、80kPa、100kPa三种压力下的锂离子电池热失控实验。在常压和低压环境下,对电加热触发的锂离子电池燃烧火焰特性进行了实验研究。实验结果表明,锂离子电池热失控的燃烧的火焰高度与普通池火不同,锂离子电池燃烧的火焰高度会随着时间而降低。随着压力的降低,锂离子电池热失控的火焰高度和燃烧时长都呈现出降低的趋势。 本文研究可为低压下锂离子电池热失控火行为的研究提供指引和支撑。  相似文献   

4.
针对锂离子电池热失控引发的民航运输安全问题,利用自主设计的试验平台,以21700型三元锂离子电池为研究对象,探究了不同荷电状态(SOC)的锂离子电池热失控危险特性,包括表面温度、开路电压、电池内阻与质量损失。研究结果表明:21700型单体锂离子电池比18650型锂离子电池额定容量增加了35%,能量密度提高了20%,若出现热安全问题时会更加危险。随着SOC的增加,21700型锂离子电池发生初爆与燃爆的时间间隔缩短。当SOC为20%时,初爆与燃爆时间间隔最长,为471 s;当SOC为40%、60%、80%和100%时,初爆与燃爆时间间隔分别缩短2.5%、18.0%、26.5%和34.0%。锂离子电池发生热失控过程中的表面温度峰值、温升速率与质量损失均随着SOC的增加而增加。锂离子电池在不同荷电状态下发生热失控时,开路电压和电池内阻变化具有一定的规律性。  相似文献   

5.
从高温热滥用角度出发,对高湿高温环境中三元锂离子电池的热失控行为进行实验和模拟的对比分析.选择荷电量(SOC)为50%的镍钴锰三元锂离子动力电池(NCM523)作为研究对象,利用恒定功率1kW 的电热炉作为外加热源,加热660s后撤掉外热源,进行湿热环境下NCM三元锂离子电池热滥用实验,并利用COMSOL多物理场仿真软件进行数值模拟.结果表明:常湿条件下,环境初始温度的提高,造成热失控发生的时刻显著提前.对于SOC为50%的NCM三元锂离子电池,在相对湿度为50%的条件下,当环境初始温度由20℃增加到40℃时,电池达到热失控的时间提前了20.2%;在室温为30℃条件下,当环境湿度由50%增加到100%时,热失控导致的最高温度增加了37.2%.高温高湿环境将造成NCM三元锂离子电池热失控的危险性显著增加.  相似文献   

6.
构建了氢气燃烧试验回路,获得了氢气在不同初始压力下燃烧的温度、压力以及燃尽率等试验数据.通过计算不同位置热电偶温度曲线变化率极值与时间的关系,获取了氢气火焰传播速度,研究了不同初始压力对氢气燃烧火焰传播速度、最高燃烧温度、峰值压力以及氢气燃尽率的影响.结果表明:在氢气体积分数较低时,随着初始压力的升高,火焰传播速度随之升高,燃烧过程中的最高温度随初始压力的增加而逐渐减小;在氢气体积分数较高时,随着初始压力的升高,火焰传播速度略有降低,燃烧过程中的最高温度随初始压力的增加而增加,但是初始压力对燃烧过程中的最高温度的影响并不明显,峰值压力随初始压力的升高而升高,初始压力对氢气燃尽率没有影响.  相似文献   

7.
采用R123为工质,以热风炉产生的烟气模拟工业炉排放的烟气作为实验热源,通过设计和搭建基于有机朗肯循环的余热发电系统实验台,研究膨胀机输出功率、系统热效率以及效率随系统状态参数的变化规律。实验结果表明:膨胀机输出功率随蒸发压力和热源温度的升高而增大,实验条件下的最大输出功率为645 W。系统热效率随工质蒸发压力的升高而增大,最大热效率为8.5%。系统效率随蒸发压力和热源温度的升高而增大,实验条件下的最大效率为3.5%。工质过热度的提高不利于提升系统的综合性能。  相似文献   

8.
针对航空货运锂离子电池的特殊环境,以及运输过程中热失控安全问题,自主设计搭建锂离子电池热失控实验平台,在康定机场(4290m,60kPa)高高原航空安全实验室开展实验。主要研究热失控过程中不同荷电量锂离子电池温度变化、氧消耗量、CO和CO2生成量以及开路电压变化情况。通过低压环境下锂离子电池热失控的研究,为航空货运锂离子电池的安全性提供了一定的理论支持。  相似文献   

9.
针对目前锂离子电池在实际运输及使用过程中通常处于受限空间中这一现状,选取市面上常见的18650型商用锂离子电池作为研究对象,在开放及不同容积(10、20 L)的受限空间中开展热失控实验。通过对比热失控现象与电池在热失控过程中的温度、电压以及实验舱内压力的变化,对锂离子电池热失控危险性进行研究。结果表明:在一定容积范围内,电池荷电状态越高,其安全阀开启温度以及热失控起始温度越低,热失控最高温度越高,电池热失控后的质量损失越大;在相同荷电状态下,环境容积越小,电池热失控最高温度越高,电池火灾危险性越大。荷电状态为100%的电池在10 L容器内热失控最高温度可达887.4℃,热失控时容器内的压力变化为204.1 kPa,质量损失为23.457 g。研究结果可对受限空间中锂离子电池的热失控防控提供理论支撑。  相似文献   

10.
针对锂离子电池航空运输需求不断增大,而低压环境下锂离子电池热失控火焰特性研究甚少的现状,设计了60 k Pa、80 k Pa、100 k Pa三种压力下的锂离子电池热失控实验。在常压和低压环境下,对电加热触发的锂离子电池燃烧火焰特性进行了实验研究。实验结果表明,锂离子电池热失控燃烧的火焰高度与普通池火不同,锂离子电池燃烧的火焰高度会随着时间而降低。随着压力的降低,锂离子电池热失控的火焰高度和燃烧时长都呈现出降低的趋势。  相似文献   

11.
通过试验研究了全海深深潜器所用磷酸铁锂离子电池在常压、20℃,常压、3℃,以及高压100MPa、20℃环境下的电气特性,评价了最大放电深度、内阻、开路电压随温度和压力变化的情况.结果表明:在常压、3℃条件下锂离子电池最大放电深度的衰减较大,欧姆内阻与极化内阻的增幅较大,开路电压略有降低;与常压、20℃相比,在高压100MPa、20℃下,锂离子电池最大放电深度的衰减较大,欧姆内阻略有增加,而开路电压略有降低.  相似文献   

12.
 为确定含二氧化碳天然气云团扩散的危险区域范围,借助数值模拟方法建立了含二氧化碳天然气云团扩散模型,详细研究了含二氧化碳天然气云团扩散过程,确定了包括窒息和燃爆在内的2种危险区域。研究结果表明,含二氧化碳天然气云团扩散中燃爆区域呈不规则圆环状分布,燃爆区域的横风向尺度变化不大,而平行于风向的方向变化较大。无论横风向还是顺风向,燃爆区域尺度随时间的变化都呈开口朝下的抛物线形分布。高含二氧化碳天然气云团扩散后形成的燃爆区域无论从时间还是空间尺度看,波及的范围都远小于窒息性危险区域。  相似文献   

13.
为了研究缩短核电站安全壳完整性试验和泄漏率试验工期的可行性,对安全壳打压试验过程中所使用的化学品的挥发性测试结果进行了研究和分析,筛选出25种可燃性物质,在60℃或略高于可燃物闪点的初始温度下,对其在100、310和520 kPa的初始压力条件下的爆炸下限进行了实验研究,获得了重要的安全性实验数据。实验结果表明,对于低闪点的可燃性液体,其在不同初始压力下的爆炸下限几乎相同;对于闪点较高的可燃性液体,当初始压力较高时,由于可燃蒸气的液化,出现不能被点燃的现象,有利于安全壳打压过程中危险性的降低;针对11种初始压力升高后出现不可燃现象的物质,提出了一种其在所测试的初始温度下可以被点燃的最大初始压力的估算方法,可为完整性试验和泄漏率试验过程中的安全性分析提供理论依据,以缩短试验工期。  相似文献   

14.
锂离子电池组涉及数据规模庞大,传统方法无法有效实现对其散热特性的研究,为此,提出一种新的通过数值模拟方式研究电动汽车锂离子电池组内散热特性的方法。介绍了锂离子电池组工作原理,分析了锂离子电池的充放电过程。通过雷诺平均法进行雷诺时均处理,获取电动汽车锂离子电池组内散热控制方程和湍流方程。介绍了初始和边界条件,通过CFD实现控制方程的求解。依次进行了锂离子电池表面散热特性数值模拟、不同风孔大小下电池组散热特性数值模拟、不同倍率充放电后电池组散热特性数值模拟以及不同环境温度下电池散热特性数值模拟。实验结果表明,锂离子电池中心垂直截面和上下壁面的温度分布均为中心最高,壁面较低,壁面温度梯度大,热量散失速度快;在风孔大小和出口大小相近,充放电倍率为1C时,电动汽车锂离子电池组内散热性最佳;环境温度越低,电池温度升高幅度越大,散热性能越好。  相似文献   

15.
锂离子电池热失控多米诺效应实证研究*   总被引:3,自引:2,他引:1  
针对锂离子电池热失控多米诺效应模型未进行实验验证导致可信度低问题,设计搭建了锂离子电池热失控实验舱。围绕锂离子电池热失控多米诺效应模拟存在的三个突出问题,设计实验方案开展实验验证研究。通过实验数据与模拟对比分析,证实一节锂离子电池热失控可以触发多米诺效应使全部锂电池发生热失控;针对模拟存在燃爆时间点比实验提前35.7%、层级燃爆时间间隔比实验增长30.97%,燃烧持续时间比实验减少31.82%的缺陷,提出在模拟中增加外部网格的改进意见;通过实证研究改进后的锂电池热失控多米诺效应模拟模型可用于工程实际。  相似文献   

16.
电动汽车锂离子电池组内散热特性数值模拟研究   总被引:3,自引:3,他引:0  
锂离子电池组涉及数据规模庞大,传统方法无法有效实现对其散热特性的研究,为此,提出一种新的通过数值模拟方式研究电动汽车锂离子电池组内散热特性的方法。介绍了锂离子电池组工作原理,分析了锂离子电池的充放电过程。通过雷诺平均法进行雷诺时均处理,获取电动汽车锂离子电池组内散热控制方程和湍流方程。介绍了初始和边界条件,通过CFD实现控制方程的求解。依次进行了锂离子电池表面散热特性数值模拟、不同风孔大小下电池组散热特性数值模拟、不同倍率充放电后电池组散热特性数值模拟以及不同环境温度下电池散热特性数值模拟。实验结果表明,锂离子电池中心垂直截面和上下壁面的温度分布均为中心最高,壁面较低,壁面温度梯度大,热量散失速度快;在风孔大小和出口大小相近,充放电倍率为1C时,电动汽车锂离子电池组内散热性最佳;环境温度越低,电池温度升高幅度越大,散热性能越好。  相似文献   

17.
为研究煤体瓦斯解吸过程瓦斯初始扩散规律,采用理论分析煤粒瓦斯解吸扩散过程,根据扩散方程解析得到瓦斯初始有效扩散系数和扩散动力学参数的近似解计算方法.对振兴二矿煤样进行不同粒径煤样、不同温度条件和不同吸附平衡压力条件下的煤粒瓦斯解吸扩散实验,并计算各种实验状态下的瓦斯初始有效扩散系数和扩散动力学参数.研究结果表明:初始有效扩散系数与吸附平衡压力、温度和煤样粒径呈正相关.不同粒径的煤粒,在压力和温度相同的平衡条件下,煤粒的粒径越大,初始有效扩散系数越大.同一粒径条件下,初始有效扩散系数随温度和吸附平衡压力的升高而增大.而动力学扩散参数则基本随着粒径的减小而增大,随吸附平衡压力和温度的升高而增大.  相似文献   

18.
采用分子动力学方法,模拟充电过程中锂离子在石墨层间的扩散行为.研究了300 K温度下石墨阳极材料的锂离子扩散性质;计算了Einstein关系下LiC_6,LiC_(12)和LiC_(18)的扩散系数,得到了Li_xC_6扩散系数与锂离子浓度的关系曲线.结果表明,在充电过程中锂离子电池的扩散系数随嵌锂浓度的变化而变化.在阶段和一阶段,扩散系数分别随浓度的增大而减小,而在LiC_(12)附近,扩散系数由于结构相变而发生较大变化.此外,通过分子动力学可视化图像显示了Li_xC_6晶体的微观结构.实验结果为锂离子电池电极变形的连续尺度模型研究提供了基础数据.  相似文献   

19.
采用挂滴法对正常重力条件下正十七烷液滴的高压着火与燃烧现象进行了试验研究,采用嵌入液滴内部的热电偶和高速相机分别记录了液滴温度变化和液滴发展情形。试验结果表明:随着环境压力的提高,液滴着火区域减小且靠近液滴表面,燃烧火焰中碳烟的生成增多,火焰宽度减小;在亚临界压力下液滴温度曲线在着火时突变,之后会维持一段较为平坦的过程,而在超临界压力下液滴温度曲线斜率较大,液滴界面温度超过了燃料临界温度;环境压力小于0.6倍临界压力时,液滴着火温度随着压力的提高迅速升高且在临界压力附近温升停止,而环境压力大于1.2倍临界压力时,液滴着火温度随着压力的提高继续升高;亚临界压力下液滴燃烧时间随着环境压力的提高迅速缩短,此时相平衡控制着液滴燃烧速率,而超临界压力下液滴燃烧时间不再继续缩短且趋于稳定,此时液滴已不存在相变过程,扩散系数开始影响燃烧速率。该结果可为高压环境中发动机着火及燃料燃烧特性研究提供参考。  相似文献   

20.
由于在脉冲爆轰发动机进口端设置微孔可有效促进爆轰起爆,故通过高速相机拍摄在初始压力为10–100kPa下等当量比丙烷/氧气的火焰传播过程研究了毫米级圆管中缓燃向爆轰转捩(deflagration to detonation transition,DDT)距离,实验在长为1930mm,管径分别为0.5、1、2、4mm的管道中进行。实验结果表明:面积发散(ξ)效应导致DDT距离与管径和初始压力不同的变化关系,当初压低于60kPa以下时,DDT距离与管径呈线性关系,而当初压在60kPa以上时,DDT距离大致在100-200mm,随管径的变化并不明显。而在同一管径下,DDT距离随初始压力的增大而减小且呈现反比关系,这与大尺度下DDT距离与初压的关系相似。最后,通过讨论边界层厚度对DDT距离的影响得到区分大小尺度DDT模式的临界值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号