首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 843 毫秒
1.
在优化后的磁控浅射和退火条件下,制备SmCo(Al,Si)/Cr硬盘磁记录介质及硬磁薄膜,实验结果表明,Sm摩尔分数为31.6%,Cr缓冲层为66nm,Sm(Co,Al,Si)5磁性层为30nm时,制得的Sm(Co,Al,Si)5/Cr薄膜的桥顽力Hc为187.8kA/m,剩磁比S=Mr/Ms≈0.94;在500℃保温25min退火后,矫顽力Hc达1042.5kA/m,剩磁比S≈0.92,从而制成了较理想的硬磁薄膜。  相似文献   

2.
以Cr层为底层和保护层,采用直流共溅射的方法在Si基片上制备了Cr(80 nm)/SmCo5(300nm)/Cr(8 nm)薄膜,并对样品进行550℃保温30 min的退火,然后分别利用EDX射线能谱仪、X射线衍射仪、原子力显微镜、振动样品磁强计分析研究了退火前后SmCo5薄膜样品的成分、结构、表面形貌、磁学性能及其变化规律.结果表明:在10-4Pa真空环境下,SmCo5薄膜在550℃退火,保温30 min后具有较好的硬磁性能,矫顽力Hc为1 738 Oe.  相似文献   

3.
采用射频磁控溅射法在玻璃基片上制备了Nd(Tb,Dy)Co/Cr薄膜.X射线衍射仪分析结果表明溅射制得的Nd(Tb,Dy)Co薄膜为非晶结构.振动样品磁强计(VSM)测试结果显示NdTbCo薄膜垂直膜面方向矫顽力与剩磁矩形比分别达到308.8kA/m和0.732,而平行膜面方向矫顽力与剩磁矩形比分别仅为22.3kA/m和0.173,这表明NdTbCo薄膜具有垂直磁各向异性.随着Nd掺杂量的增加,Nd(Tb,Dy)Co薄膜的矫顽力逐渐降低,克尔旋转角与反射率则逐渐升高.(NdxTb1-x)31Co69的克尔旋转角和反射率分别从x=0的0.2720°,0.2616,上升到x=0.338的0.3258°,0.3320.(NdxDy1-x)33Co67的克尔旋转角和反射率分别从x=0.210的0.2761°,0.3054,上升到了x=0.321的0.3231°,0.3974.Nd掺杂量对克尔旋转角的影响可用Nd(Tb,Dy)Co的亚铁磁结构进行解释.  相似文献   

4.
采用射频磁控溅射法在玻璃基片上成功地制备了(Sm)TbCo/Cr非晶垂直磁化膜,并就薄膜组分对其磁特性的影响进行了研究.部分Tb原子取代Sm以后,薄膜仍然具有较高的磁各项异性.薄膜组分为(Sm0.286 Tb0.714)31Co69/Cr时,其饱和磁化强度Ms为330 emu/cm3,矫顽力为5.0 KOe;薄膜组分为(Sm0.343Tb0.657)31 Co69/Cr时,其饱和磁化强度Ms为385 emu/cm3,矫顽力为4.7 KOe.薄膜组分对SmTbCo/Cr非晶垂直磁化膜的磁特性影响,可以通过对薄膜结构特性的分析得到合理的解释.  相似文献   

5.
采用磁控溅射复合靶的方法制备了SmTbCo/Cr和SmDyCo/Cr非晶垂直磁化膜,分析了Sm含量对SmTbCo/Cr和SmDyCo/Cr薄膜磁光性能的影响.结果表明:随着Sm含量的增加,(SmxTb1-x)31Co69和(SmxDy1-x)36Co64薄膜的剩余磁化强度Ms、克尔旋转角θk和反射系数R增加,而Hc随之减少;Sm含量为29%~30%时,Hc×Ms最大.  相似文献   

6.
采用射频磁控溅射法在玻璃基片上成功地制备了(Sin)TbCo/Cr非晶垂直磁化膜,并就薄膜组分对其磁特性的影响进行了研究.部分Tb原子取代Sm以后,薄膜仍然具有较高的磁各项异性.薄膜组分为(Sm0.286Tb0.714)31Co69/Cr时,其饱和磁化强度Ms为330emu/cm^3,矫顽力为5.0KOe;薄膜组分为(Sm0.343Tb0.657)31Co69/Cr时,其饱和磁化强度Ms为385emu/cm^3,矫顽力为4.7KOe.薄膜组分对SmTbCo/Cr非晶垂直磁化膜的磁特性影响,可以通过对薄膜结构特性的分析得到合理的解释.  相似文献   

7.
利用X射线衍射和磁性测量研究Co80 xZr20-x(x=0,1,2,3,4)合金、快淬薄带的结构与磁性. 结果表明, 所有样品的比饱和磁化强度均较大, 且在实验范围内随退火温度的升高而增加;经750 ℃热处理2 h后, Co81Zr19样品的比饱和磁化强度达到最大值128 (A*m2)/kg;Co82Zr18快淬样品在25 m/s速率下的矫顽力最大, 为60 kA/m, 根据该样品中Co5Zr相的含量较大可知, Co5Zr相为Co-Zr合金的硬磁相;由初始磁化曲线可知, 所有样品的矫顽力机制为成核模型.  相似文献   

8.
应用对靶磁控溅射法在玻璃基底上制备了Ti(t)/Co(54nm)/Ti(t)(t=5,10,15,20,25nm)纳米薄膜,研究了非磁性Ti层厚度对样品磁特性的影响.实验结果显示,Ti(5nm)/Co(54nm)/Ti(5nm)样品的垂直膜面矫顽力高达159kA·m-1.研究表明,如此高的矫顽力主要源于样品晶粒的磁晶各向异性.另外,非磁性Ti原子的扩散在一定程度上减小了磁性颗粒间的交换相互作用,导致出现大的矫顽力.  相似文献   

9.
退火温度对FePt薄膜物性的影响   总被引:2,自引:1,他引:1  
用直流磁控溅射方法和原位退火工艺在玻璃基片上制备了Fe48Pt52纳米薄膜.研究发现,退火温度对FePt膜的微结构和磁特性有很大的影响,退火可以减小颗粒间的磁相互作用,矫顽力随退火温度的升高先急剧增大后减小,600℃退火处理的FePt样品平行膜面方向的矫顽力略大于垂直方向,分别达到了684.4,580.9 kA/m;650℃退火处理的FePt样品在2个方向上都获得了巨大的矫顽力,最大值达到了986.8 kA/m.  相似文献   

10.
讨论了掺Sm、Pr的MnBi合金薄膜的结构、磁性和磁光性能.实验表明,经过退火处理(375℃~425℃/2~4h),样品形成MnBi晶体结构.掺杂含量x=0.1~0.25,样品具有较大的Kerr角(θKmax=2.57°),内禀矫顽力MHC=1.5~5.6kOe,剩余磁化强度Mr=3.0~5.6kOe,剩磁比r=0.88~0.98.磁光谱表明,随着掺杂含量的增大,样品Kerr角的极大值向长波方向移动.在变温过程中,样品的矫顽力随温度上升而增大,在薄膜(d<250nm)情况下矫顽力以形核机制为主。  相似文献   

11.
采用机械破碎与氢破碎和氮气-固相反应法制得了Sm_2(Fe,M)_(17)N_y化合物粉末及粉末压结体,研究了金属钐含量、过渡元素(M=Co、Cr、V、Mn、Zr、Si、Ga)部分取代铁时对Sm_2(Fe_(1-x)M_x)_(17)N_y粉末压结体磁性能的影响。结果表明:铬、镓能显著提高粉末的矫顽力。Sm_2(Fe_(0.017)Ga_(0.983))_(17)N_y粉末压结体的矫顽力达到iHc=2000kA/m。  相似文献   

12.
采用直流和射频磁控溅射在Si(001)基片上制备Ag/FePt/C薄膜,并将其在不同温度下进行真空热处理,得到了具有高矫顽力的L10-FePt薄膜.利用X射线荧光(XRF)、X射线衍射(XRD)和振动样品磁强计(VSM)研究样品的成分、结构和磁性.结果表明,样品经400℃热处理后发生了无序—有序相转变,以Ag元素为底层可降低有序化温度,添加Ag和C可抑制晶粒生长.随着热处理温度的升高,FePt的晶粒尺寸和矫顽力逐渐增大,经600℃热处理后,样品中FePt的平均晶粒尺寸为14nm,垂直膜面和平行膜面的矫顽力分别为798.16kA/m和762.35kA/m.  相似文献   

13.
对靶磁控溅射FeCoN薄膜的结构与磁性   总被引:1,自引:0,他引:1  
利用改进后的对靶磁控溅射系统,  以N2/Ar混合气体为溅射气体,  在未加热的Si(111)衬底上沉积FeCoN薄膜.  采用X射线衍射仪(XRD)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)和超导量子干涉仪(SQUID)研究不同Co靶溅射功率对FeCoN薄膜样品的结构、 形貌和磁性性能的影响.  结果表明: 固定Fe靶功率为160 W(电流I=0.4 A),  当Co靶功率为2.4 W(I=0.04 A)时,  薄膜由Co溶入ε-Fe3N中形成的ε-(Fe,Co)3N化合物相构成; 当Co靶功率为58 W(I=0.2 A)时,  获得了Fe3N/Co3N化合物相,  薄膜的饱和磁化强度(Ms)为151.47 A·m2/kg,  矫顽力(Hc)为3.68 kA/m; 当Co靶功率为11.9 W(I=0.07 A)时,  制备出具有高饱和磁化强度的α″-(Fe,Co)16N2化合物相,  薄膜的Ms=265.08 A·m2/kg,  Hc=8.24 kA/m.    相似文献   

14.
用磁控溅射法在Si(100)基片上沉积不同厚度的Co底层,在Co层上先用溶胶-凝胶(sol-gel)法旋涂原始溶液,再经H2还原获得FeCo/SiO_2薄膜,并用X射线衍射仪测试样品的晶体结构,由振动样品磁强计(VSM)表征薄膜的磁性质.结果表明:随着Co底层厚度的增大,FeCo的晶面取向由(110)逐渐转变为(200);当Co底层厚度为10nm时,I(200)/I(110)值最大,即FeCo(200)择优取向最强,同时薄膜平行膜面的饱和磁化强度最大,矫顽力最小,即Co厚度增加有利于改善薄膜的软磁特性.  相似文献   

15.
采用直流磁控溅射方法在表面氧化的Si(001)基片上制备不同厚度的FePt薄膜, 并利用原子力显微镜(AFM)、 X射线衍射(XRD)和振动样品磁强计(VSM)表征样品的形貌、结构和磁性. 结果表明: 将薄膜样品在H2气氛中经600 ℃退火1 h, 得到了L10-FePt薄膜; 薄膜具有(001)织构或明显的(001)取向生长, 随着沉积厚度
的增加, FePt的晶粒尺寸变大, 样品的有序化程度增大, (001)取向生长呈减弱的趋势; 样品均具有明显的垂直磁各向异性, 随着薄膜厚度的增加, 平行膜面矫顽力增大, 垂直膜面矫顽力先增大后减小, 当沉积厚度为10 nm时, 样品的垂直磁各向异性最佳.  相似文献   

16.
C/[Co5nm/Cxnm]4/C纳米颗粒膜的微结构和磁特性研究   总被引:1,自引:1,他引:0  
在室温下,应用对靶磁控溅射法制备了多层C/[Co5nm/Cxnm]4/C颗粒膜.C靶和Co靶分别采用了射频溅射和直流对靶溅射模式,随后进行了原位退火.用振动样品磁强计(VSM)和扫描探针显微镜(SPM)系统研究了插层C层的厚度对多层颗粒膜的微结构和磁特性的影响.X射线衍射(XRD)图样显示出样品具有六角密堆积结构.振动样品磁强计测量表明磁矩很好地排列在膜面内,在插层C层的厚度为12nm时矫顽力达到最大值,剩磁比接近于1.  相似文献   

17.
Al2O3或TiO2掺杂的ScSZ固体电解质纳米晶薄膜的制备及表征   总被引:2,自引:0,他引:2  
利用溶胶-凝胶旋涂法,在单晶硅基片(100)上分别制得了厚度约为0.31μm的(Al2O3)0.10(Sc2O3)0.08(ZrO2)0.82和0.36μm的(Sc2O3)0.125(TiO2)0.175(ZrO2)0.70固体电解质纳米晶薄膜。烧结实验结果表明,两种薄膜均在650℃以上开始晶化,温度越高,晶化越完全,在800℃可完全晶化;所得纳米晶颗粒呈纯的萤石结构立方相;铝和钛掺杂的纳米晶颗粒的平均大小分别为47和51nm。铝掺杂的薄膜非常均匀致密,然而,钛掺杂的薄膜存在少量微气孔。  相似文献   

18.
采用磁控溅射方法在玻璃基片上制备了[Ag/CoPt]n/Ag薄膜,并在600℃退火30min.结果表明,Ag掺杂厚度(x)对CoPt薄膜的结构和磁性影响很大.当Ag层厚度为0.5nm时,薄膜的垂直取向程度最高,其垂直矫顽力高达8.68×10^5A·m^-1而平行矫顽力仅为0.54×10^5A·m^-1.适当厚度的Ag不仅有利于薄膜的垂直取向,而且能降低晶粒间的交换耦合作用.  相似文献   

19.
用直流磁控溅射方法和原位退火工艺在玻璃基片上制备了FexPt100-x纳米颗粒膜.研究发现,Fe含量对FePt纳米颗粒膜的微结构和磁特性有很大的影响.矫顽力随Fe含量的增加而增大,当x=48时矫顽力Hc达到了1 040 kA/m,样品出现很好的有序化L10结构扫描探针显微镜(SPM)观察结果显示,所有样品具有横跨数个晶粒的粒状磁畴,Fe48Pt52的粗糙度Ra大约0.6 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号