首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
一、引言以G表示局部紧的交换群,G表示G的对偶群,P(G)是G上的伪测度全体,其中的元素记为σ.T是从L_1(G)到P(G)上的算子.本文以“对一切f,g∈L_1(G)满足T(f*g)=(Tf)*g的算子T~(?)作为从L_1(G)到P(G)的乘子的定义,证明了如下五个条件是等价的: (i)T∈M(L_1(G),P(G)),这里M(L_1(G),P(G))表示乘子全体. (ii)T是线性有界算子,并且Tτ_sf=τ_sTf对一切f∈L_1(G)成立,其中τ_s表示平移算子.  相似文献   

2.
本文将C代数谱的一个定理推广到Banach代数情况.主要结果是:设A为有单位元的Banach代数,B为A的子代数,而在B中定义了一个*运算和‖·‖B,使B成为C代数,且对x_n∈B,a∈A,‖x_n‖→0,ax_n∈B或x_na∈B那么有‖ax_n‖B→0,或‖x_na‖B→0,这时成立σA(x)=σB(x)(x∈B)。  相似文献   

3.
1 预备知识 定义1 记W0k,p(x)(Ω)的共轭空间为W-k,p'(x)(Ω),定义W-k,p'(x)(Ω)的范数如下: ‖ G ‖-k,p'=sup(|G(f)|)/(‖f‖k,p):f∈W0k,p(x)(Ω).  相似文献   

4.
证明了L(p)(p>1)中‖f‖p与Ef(p)关于p的连续性,即当p0>p>1,f (x)∈LPO(E)时,limp→po‖f‖p=‖f‖PO,limp→po Ef(p)=Ef(po).  相似文献   

5.
设L_1,(G)是局部紧交换群G上可积函数(关于Haar测度)全体所组成的带有通常范数和卷积的空间.又设T:L_1(G)→L_1(G)是连续线性算子,如果T与平移算子τ_s可以互相交换,即Tτ_8=τ_8T,就称T是L_1,(G)上的乘子,Edwards、Helson、Wendel等曾经研究了这种乘子的特征以及平移算子(它显然是乘子)在所有乘子中的地位(参见[2]),本文将考察广义函数空间E′上的乘子,获得了一些相仿的结果,但由于E′不象L(G)那样是一个Banach代数,同时又没有Haar积分这一工具,因此在考察的方法上只能利用广义函数本身的特性了。  相似文献   

6.
设f:G→G是群G的自同态,满足f(x)=xn(?x∈G),证明了G是交换群当且仅当n=-1或2;设M={n|f:G→G是群G的自同态,满足f( x)=xn ,?x∈G},证明了G是交换群当且仅当n遍历M中所有元时,所有形如n( n-1)元的最大公因数为2.  相似文献   

7.
设(1)是函数f(x)∈L_2的Fourier级数,{S(f;x)}是级数(1)的部分和序列。又为f在L_(2x)空间中的范数。  相似文献   

8.
下面先给出 BCK-代数中的几个定义   定义 1设〈 X;*, 0〉是一个 BCK-代数, X的一个非空子集 A被称为一个理想,如果它满足   (1)0∈ A  (2)x∈ A, y* x∈ A, y∈ A(以后表示可推出 )  定义 2设和〈 Y;* 1,θ〉是两个 BCK-代数,如果存在一个映射, f∶ X→ Y,使得对于任意的 x, y∈ X,有 f(x* y)=f(x)* 1f(y),则称 f为 X到 Y的一个同态映射,且称 X和 Y是同态的,记 X~ Y  定义 3设 f是两个 BCK-代数到的一个同态,称集合 Ker(f)={x∈ X;f(x)=θ }为同态 f的核。 在 [1]中已有如下结论 …  相似文献   

9.
本文所讨论的函数都以1为周期,我们用L_(W~∞_(0.1))表示由Walsh函数张成的L_(W~∞_(0.1))的子集的闭包。用X=X[O.1)表示空间L_((0.1))~q(1≤q<∞)或L_(W~∞_(0.1))中的一个。f∈X[O,1]的范数表为‖f‖x。  相似文献   

10.
本文给出光滑Banach空间X到共轭空间X~*的范数对偶映照是一个同胚映照的充要条件。定义1 设X是线性赋范空间,f是定义在开凸集AX上的连续且可微的凸函数,映照 T:x→▽f(x),x∈A叫做(关于凸函数f的)梯度映照。▽f(x)表示凸函数f在x∈A点的梯度。T是X到X~*的非线性映照。定义2 设X是光滑的线性赋范空间,f(x)=1/2‖x‖~2,关于凸函数f的梯度映照  相似文献   

11.
设ρ(x,α)是R~n上具C~∞系数的线性偏微分算子。关于伸缩群{δ_τ}_(τ>0)是m次拟齐性的。其中δ_τ:R~n→R~n,δ_τ(x_1,…,x_n)=(τ~(a_1)(x_1),…τ~(a_n)(x_n),x=(x_1,…x_n)∈R~n,τ>0,a_1,…a_n为给定正数。设S为R″上的Schwartz空间,给定f∈S,考虑方程 pu=f,u∈S (1) 定理1 S中存在一个属于第二纲集的子集F,对于每个/∈F,方程(1)无解。定理2 (1)若m>0,则方程(1)有解的必要条件为:对于每个满足sum from j=1 to n(α_jα_j相似文献   

12.
设G为一个图,对任意x∈V(G),其离心率e(x)定义为e(x)=max{d(x,u)│任意u∈(V(G)}。将G中各点的离心率的值按照(不重复)从小到大排列而得到的数列称为G的离心率值列。现设{ei}1 ≤i≤s为一个非减的整数数列。本得到了下面三个结果:(i){ei}1 ≤i≤s是图的离心率值列当且仅当{ei}1≤i≤s=[e1,es]且e1≥1,es≤2e1;(ii)定义NG(e)={x│x∈V(G)且e(x)=e},若│NG(e)│=1则e=r(G);(iii)有给定离心率值列[r,r s]的图的最小阶f[r,r s]为f[r,r s]={2r s,若0≤s≤r-2;r s 1,若s=r-1或r;这里,[s,s k]表示[r,r s]数列{r-1 i}1≤i≤s 1。  相似文献   

13.
关于Carleson算子的线性化   总被引:2,自引:2,他引:0  
讨论了Carleson算子C的线性化问题,证明了下面的结论:设1≤p,q<∞,则Carleson算子C为弱(p,q)型的A>0,s.t.对任一有界的阶梯函数n:R→R,均成立‖Cnf‖L(q,∞)≤A‖f‖p,f∈S.此处,Cn为C在n处的一个线性化.并且,说明了对(p,q)型有界性成立类似的结果.此外,对bi-Carleson算子也得到了对应的结论.  相似文献   

14.
引入新的K-泛函K(f,t)β研究Szasz-Durrmeyer算子逼近的强逆不等式,从而得到了算子逼近的特征刻画.1)设f∈CB[0,∞),则存在常数R>1,当l≥Rn时,有K(f,1/n)β≤Cln.(‖Mnf-f‖β+‖Mlf-f‖β);2)设0相似文献   

15.
证明了当 f∈PWπ时 ,‖s(k)2mf - f(k) ‖ Lp(R) → 0 (m→∞ ,2≤p≤∞ ,k =0 ,1,2 ,… ) ,其中PWπ是经典的Paley Wiener类 ,s2mf是在实Riesz基序列上对 f插值的唯一确定 2m - 1次缓增样条 .同时还证明了当 { f(tj) }∈l2 ,f∈Lp(R) (p≥ 2 ) ,‖s2mf‖2 ≤A一致成立时 ,若limm→∞ ‖f -s2mf‖ p=0 ,则 f∈Bπ ,p,其中Bπ ,p为指数π型整函数在R上的限制与Lp(R)的交  相似文献   

16.
设 G是一个图 ,用 V(G)和 E(G)表示它的顶点集和边集 ,并设 g(x)和 f (x)是定义在 V(G)上的两个整数值函数 ,且对任意的 x∈ V(G)有 0≤ g(x) 相似文献   

17.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

18.
设G是群,φ:G→G为自同构.若对任意的x∈G,有φ(x)x=xφ(x),则称φ为G上的交换自同构.设Tn是域F上所有n×n阶可逆上三角矩阵全体按矩阵乘法构成的群,n≥3,F*为F中非零元全体组成的乘法群.证明了映射φ:Tn→Tn为Tn的交换自同构当且仅当存在群同态σi:F*→F*,1≤i≤n,使得φ(A)=(∏ni=1σi(aii))A,对A=(aij)n×n∈Tn,并且对任意的k=1,2,…,n,以及任意的a∈Imσk,方程xσ1(x)σ2(x)…σn(x)=a在F*中存在唯一解.  相似文献   

19.
设(A,G,α)为C*-动力系统,其中A为连续迹C*代数,G为顺从群,at∈Autcb(a)(A).对任一x∈A,F∈L1(G,A),令f(x)为F在A(x)×G中的标准的像.证明B=(A(x)×G,AG)是A上的C*代数连续场,其中AG是上述f(.)的闭生成.作为应用a(x),证明存在从A × G到A上的连续开映射i使得对任一π×U∈A × G,i(π×U)=π1,其中π1为A中满足kerπ=kerπ1的唯一的元.  相似文献   

20.
设P是实Banach空间E的一个锥 ,f是PR 到P的一个 1-集压缩映射 ,且对PR中任一序列 {xn} ,若limn→∞(xn-f(xn) ) =θ,则存在u∈PR,使得u -f(u) =θ.那么当对任意满足‖f(x)‖ >R的x∈ PR,存在y∈IpR(x) ,使‖y-f(x)‖<‖x-f(x)‖ ,或都有‖f(x) -x‖≠‖f(x)‖ -R ,或存在 1<α <+∞ ,使‖f(x)‖α-Rα≤‖f(x) -x‖α,或存在 0<β<1,使‖f(x)‖β-Rβ≥‖f(x) -x‖β,或对任意 0 <λ<1,都有x≠λf(x)时 ,f在PR 中有一个不动点 .通过以上结论的给出 ,解决了一类微积分方程的解的存在性 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号