首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
对杉木多代连栽地营造的杉木火力楠混交林和杉木多代萌芽林(杉木纯林)两种模式碳贮量和碳吸存的差异作比较研究,结果表明,混交林碳库总量为133.845 t.hm-2,比纯林增加了6.54%,其中活植物体部分碳库和土壤碳库分别为78.919 t.hm-2和54.926 t.hm-2,分别占碳库总量的58.96%和39.78%.混交林乔木层10~11年碳净固定量为10.686 t.hm-2,折算成CO2为39.182 t.hm-2,是纯林的1.11倍.因此,与多代连栽杉木林对比,营造杉阔混交林有利于提高生产力,培肥地力,增强生态系统碳吸存能力.  相似文献   

2.
留杉栽阔模式生物量及营养元素组成   总被引:1,自引:0,他引:1  
通过对多代杉木萌芽林强度间伐补栽细柄阿丁枫(留杉栽阔)和保留杉木多代萌芽林(对照)处理的生物量及营养元素组成的研究,结果表明:模式中杉木平均树高、胸径及单株生物量分别是对照杉木的1.20倍、1.24倍和1.26倍。模式的生态系统营养元素贮量比对照的增加4.17%,其中氮、磷、钾增加尤为明显。细柄阿丁枫平均木枝条、根系(特别是细根)生物量及其所占比例均比杉木的高,且细柄阿丁枫早期稍耐荫。细柄阿丁枫是杉木低产林分改造或与杉木混交优良树种之一。  相似文献   

3.
对福建南平15 a生杉木火力楠混交林及杉木纯林生物量C库进行了研究.结果表明,混交林生物量C库总量为107.715 t.hm-2,比杉木纯林(72.194 t.hm-2)高出了49.20%.混交林和杉木纯林乔木层C库分别占总生物量C库的98.46%和98.82%,两林分总生物量C库的差异主要取决于乔木层C库的差异.混交林生物量C库在各个器官及各个空间层次上的分配均高于杉木纯林.从碳吸存的角度看,杉木火力楠混交林是一种比杉木纯林更加优良的经营模式.  相似文献   

4.
厚荚相思人工林碳素贮量及其空间分布   总被引:1,自引:0,他引:1  
对7年生厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量为470.1~533.8 g/kg,排序从大到小依次为树叶、树枝、树干、树根、树皮。灌木层、草本层和凋落物层碳素含量分别为465.4、425.7和478.3 g/kg。土壤(0~80 cm)平均碳素含量为12.94 g/kg,随土层深度的增加,各层次土壤碳素含量逐渐减少。厚荚相思人工林生态系统总碳贮量为141.05 t/hm2,其中乔木层为46.97 t/hm2,占整个生态系统碳贮量的33.30%;灌草层为2.07 t/hm2,占1.47%;凋落物层为4.49 t/hm2,占3.18%;林地土壤(0~80 cm)为92.01 t/hm2,占65.23%。厚荚相思各器官碳贮量与其生物量成正比例关系,树干的碳贮量最高,占乔木层碳贮量的52.20%,树枝、树叶、树皮和树根等碳贮量共占乔木层的47.80%。7年生厚荚相思人工林乔木层年净生产力为20.06 t/(hm2·a),碳素年净固定量为9.86 t/(hm2·a)。  相似文献   

5.
研究不同施肥强度和更新方式对杉木人工林固碳的长期影响,对提升人工林固碳潜力具有重要意义。应用FORECAST模型模拟了不同施肥强度和更新方式对杉木人工林固碳的长期影响,达到优化经营杉木人工林的目标。研究表明,在中等立地条件下,150 a不同施肥强度处理对总固碳量的影响依次是:60 kg/hm~2N120 kg/hm~2N30 kg/hm~2N0 kg/hm~2N,适宜的施肥可以提高土壤有机碳储量,如果过量会造成土壤"氮饱和"效应。杉木实生林生物碳储量要高于萌芽林,但萌芽林在水土保持、土壤养分及生物多样性等方面具有优势,在萌芽林下补植阔叶树形成杉阔混交林是一种理想的固碳经营模式。  相似文献   

6.
明确南亚热带杉木(Cunnighamia lanceolata)、红锥(Castanopsis hystrix)人工林碳储量及分配特征,可为应对全球气候变化研究提供基础数据,为碳汇林业发展提供科学依据。以我国亚热带地区广泛栽培的杉木人工林和红锥人工林为研究对象,以相对生长方程计算林木生物量,实测林下植被生物量、林木和林下植被各组分含碳率、土壤含碳率等,进而分析不同人工林的碳储量及分配规律。结果表明:(1)人工林生态系统不同组分的含碳率存在一定差异,虽然杉木和红锥的全株含碳率相差无几,分别为48.04%和47.80%,但林下植被和土壤表层的含碳率差别较大,林下植被含碳率为40.84%—47.73%(杉木林)、36.69%—43.76%(红锥林);土壤表层含碳率为2.28%—3.30%;(2)杉木人工林乔木层碳储量(71.48t/hm~2)、林下植被碳储量(1.533t/hm~2)显著高于红锥人工林乔木层碳储量(51.82t/hm~2)和林下植被碳储量(1.185t/hm2),而红锥人工林枯落物层碳储量(0.673t/hm2)显著高于杉木人工林(0.386t/hm~2);(3)杉木人工林的皮、叶、根碳储量显著高于红锥人工林,相反,红锥人工林的枝碳储量(8.04t/hm~2)显著高于杉木人工林(6.00t/hm~2);(4)杉木人工林生态系统碳储量(217.56t/hm~2)与红锥人工林生态系统碳储量(195.05t/hm~2)无显著差异,土壤和乔木层是人工林生态系统的主要碳库,分别占生态系统碳储量的66.37%—72.81%和26.59%—32.93%。杉木人工林乔木层、林下植被和生态系统碳储量均高于红锥人工林,红锥人工林枯落物碳储量显著高于杉木人工林,杉木是发展碳汇林的较好树种。  相似文献   

7.
通过对中亚热带米槠次生林皆伐、火烧前后生态系统(乔木层地上部分和地下部分、林下植被层、枯枝落叶层及0~100 cm矿质土壤层)碳贮量变化进行研究,探讨皆伐火烧对中亚热带米槠次生林生态系统碳贮量的影响.结果表明,米槠次生林皆伐前生态系统碳贮量为278.6 t·hm-2,其中乔木层占64%,而林下植被层与枯枝落叶层碳贮量较低;皆伐后,树干(包含树皮)及粗枝被移出生态系统,其中包含97.5 t·hm-2的碳,相当于生态系统碳贮量的35%.火烧后2 d,采伐剩余物(包含枯枝落叶层物)碳贮量损失31.9 t·hm-2,损失率高达87%,而土壤表层(0~10 cm)碳贮量为(20.0 t·hm-2),较火烧前下降了18%.由此可见,皆伐和火烧均造成生态系统碳贮量显著下降.  相似文献   

8.
毛竹杉木混交林生产力和空间结构研究   总被引:3,自引:0,他引:3  
对14年生的杉木毛竹混交林、杉木纯林和毛竹纯林的生长状况、林分生物量和地上、地下空间结构研究,结果表明,在杉木毛竹混交林中,杉木密度适宜,能有效提高杉木和毛竹的生长量、生物量和充分利用营养空间.杉木密度为1525株/hm2、毛竹密度为580株/hm2的混交林具有最大的生长量和生物量,而且林分地上、地下空间结构合理,是杉木毛竹混交林中的优化模式.  相似文献   

9.
【目的】分析浙江省公益林中对杉阔混交林和阔杉混交林群落组成及其分布影响最为显著的环境因子,为亚热带杉木人工林珍贵化改造和珍贵树种保护提供合理的科学依据。【方法】采用双向指示种分析(TWINSPAN)和典范对应分析(CCA)方法,针对分布于浙江省的427个杉阔混交林和阔杉混交林样地进行物种组成及群落结构分析。【结果】杉阔混交林可划分为5类群丛,阔杉混交林可划分为6类群丛。在杉阔混交林的5类群丛中与杉木伴生的树种主要为青冈(Quercus glauca)、木荷(Schima superba)、马尾松(Pinus massoniana)和黄山松(Pinus taiwanensis)等;土壤厚度、坡向和坡度等是影响杉阔混交林群丛分布的主要环境因子。在阔杉混交林的6类群丛中,与杉木伴生的树种分别为马尾松、板栗(Castanea mollissima)、青冈、木荷、毛竹(Phyllostachys edulis)等;林龄、坡度和海拔等因素是影响阔杉混交林群落分布的主要环境因子。在杉阔混交林中,小叶青冈(Cyclobalanopsis myrsinifolia)、红楠(Machilus thunbergii)、鹅掌楸(Liriodendron chinense)、甜槠(Castanopsis eyrei)和光皮桦(Betula luminifera)等珍贵树种与杉木对生境的选择较为接近;在阔杉混交林中,甜槠、天竺桂(Cinnamomum japonicum)、小叶青冈、柳杉(Cryptomeria japonica)、苦槠(Castanopsis sclerophylla)和青冈等珍贵阔叶树种与杉木对环境的选择较为接近。【结论】选择与杉木生境接近的伴生珍贵阔叶树种进行补植改造,可以有效提高造林成活率,有利于促进杉木人工林阔叶化进程。  相似文献   

10.
阐明珍贵乡土树种与桉树混交对生态系统生物量和碳储量的影响是精准评估人工林碳源/汇性质和提升人工林质量的重要基础。本研究以6年生的桉树纯林(EP)、桉树×红锥混交林(MEC)、桉树×望天树混交林(MEP)为对象,探讨珍贵乡土树种与桉树混交对生态系统生物量和碳储量的影响及作用机制。结果表明,EP、MEC、MEP的生态系统生物量和碳储量分别是135.78,154.75,155.24t/hm~2和197.89,225.45,227.37t/hm~2。方差分析表明,珍贵乡土树种红锥和望天树与桉树混交显著提高了人工林生态系统的生物量和碳储量,混交林生态系统生物量比纯林提高13.97%—14.33%,而碳储量比纯林提高13.93%—14.89%。说明红锥和望天树与桉树混交属于促进(Facilitation)或竞争减弱(Competitive reduction)的种间相互作用关系,种间竞争小于种内竞争,资源的有效性和利用率提高,因而促进林分生态系统生物量和碳储量的提高。红锥和望天树与桉树混交可以实现桉树木材生产与其他生态服务的平衡,是一种较好的经营模式。  相似文献   

11.
间伐对杉木人工林生态系统碳储量的短期影响   总被引:1,自引:0,他引:1  
【目的】研究不同间伐强度下杉木人工林生态系统碳储量及其分配格局,进一步优化林分经营管理措施,准确评估间伐对杉木人工林生物量和碳储量的短期影响,为提高人工林的碳汇能力提供依据。【方法】以福建省三明市官庄国有林场11年生杉木人工林为研究对象,选择坡度、坡位、土壤条件相对一致的林分,按照完全随机区组试验设计,设置弱度间伐(31%,伐后林分2 250株/hm2,LIT)、中度间伐(45%,伐后林分1 800株/hm2,MIT)、强度间伐(63%,伐后林分1 200株/hm2,HIT)等3种间伐强度;共设置9块20 m×20 m样地,采集深度为1 m剖面内不同土层的土壤;并在样地内每木检尺,利用生物量回归方程对乔木层生物量进行估算,同时实测林下植被和凋落物生物量;通过元素分析仪测定植被和土壤碳含量,并根据碳含量估算碳储量。【结果】间伐后3年,杉木人工林乔木层碳储量随着间伐强度的增加而减小,LIT、MIT、HIT处理样地乔木层碳储量依次为66.16、58.78、49.71 t/hm2;杉木人工林灌木层和草本层的碳储量随着间伐强度的增加而显著增加,分别占生态系统碳储量的0.03%~0.19%和0.01%~0.67%;凋落物层碳储量占生态系统碳储量的2.87%~4.32%,间伐对凋落物层碳储量无显著影响;土壤有机碳储量在不同间伐处理间差异显著(P<0.05),杉木人工林土壤层碳储量随着间伐强度的增加而降低,HIT处理土壤层碳储量较LIT和MIT处理降低了32.07%和1.03%。间伐后3年,杉木人工林生态系统碳储量随着间伐强度增加而显著降低(P<0.05),LIT、MIT和HIT处理样地总碳储量依次为173.85、161.12、121.73 t/hm2。乔木层和土壤层碳储量之和占比超过90.00%,表明乔木层和土壤层是巨大的碳库,且间伐短期降低生态系统总碳储量。【结论】间伐后短期内杉木人工林乔木层、凋落物层和土壤层碳储量随着间伐强度的增加而下降,而灌木层和草本层的碳储量则随着间伐强度的增加而增加,表明间伐3年后试验林地还处于恢复期,杉木人工林间伐短期内会降低生态系统总碳储量。研究结果可部分解释间伐后短期内杉木人工林生态系统各组分碳储量的分布格局,并为研究区的人工林碳汇增加和可持续经营提供科学依据。  相似文献   

12.
中国杉木林生态系统碳储量研究   总被引:2,自引:0,他引:2  
 利用中国4次森林资源清查资料以及中国森林生态系统定位观测研究站(CFERN)的实测数据,估算了中国1977-2003年4个时期杉木林生态系统的碳储量,分析了其年龄结构特征、垂直分配结构特征、时空动态格局和贮碳潜力。总碳储量研究结果 1977-1981为 1.09 Gt,1984-1988为1.496 Gt,1994-1998为2.446 Gt,1999-2003为2.866 Gt。江西、湖南、浙江、福建、云南、广西和广东7省的杉木林碳储量约占84%~86%。幼、中龄杉木林碳储量在79%~83.90%之间,随着杉木林的演替成熟,我国杉木林生态系统是一个潜在的碳库。在垂直分布上,乔木层碳储量占9.38%~10.63%,林下植被占0.6%~0.7%,土壤占87.99%~89.02%,枯落物占0.68%~0.78%,不同时期杉木林生态系统碳储量的垂直分配结构基本相似。1999-2003期间中国杉木林生态系统碳素现存量为2.866 Gt,一个龄级期(10 a)后碳储量将达到3.772 Gt,并以90.63 Mt·a-1的平均积累速率递增,是一个贮存潜力大,增长速率快的碳库。  相似文献   

13.
【目的】对浙江省温州市森林生态系统碳储量进行研究,摸清区域森林碳储量现状,为区域碳汇功能的评价提供基础数据。【方法】基于温州市2018年森林资源年度监测的马尾松林、其他松林、杉木林、柳杉林、柏木林、硬阔林、针叶混交林、阔叶混交林、针阔混交林、毛竹林等10种主要类型的森林资源监测数据,以及30个调查样地的实测数据,用平均生物量转换因子法计算不同森林类型的碳储量和碳密度,同时采用Pearson相关分析法对不同森林生态系统各组分之间有机碳储量进行相关性分析。【结果】2018年,温州市森林生态系统碳储量为81.70 Tg, 其中乔木层18.46 Tg,灌草层1.55 Tg,凋落物层1.02 Tg和土壤层60.67 Tg,分别占生态系统碳储量的22.60%、1.89%、1.25%和74.26%。温州市的森林生态系统碳密度为123.81 t/hm2,其中乔木层27.98 t/hm2,灌草层2.34 t/hm2,凋落物层1.54 t/hm2和土壤层91.95 t/hm2,土壤有机碳库为植被有机碳库的2.88倍。乔木层和土壤层有机碳储量是温州市森林生态系统的主要碳库,占全部森林生态系统有机碳储量的96.86%。乔木层碳密度最大的是柏木林,达到46.06 t/hm2;阔叶混交林碳密度最低,为20.50 t/hm2;土壤层中,碳密度最大的为柳杉林,达到136.97 t/hm2;最小的为其他松木林,为49.38 t/hm2。不同林分生态系统碳密度有一定差异,其中柳杉林碳密度最大(185.42 t/hm2),最低的是马尾松林(83.34 t/hm2)。各组分碳储量相关性分析表明,乔木层与凋落物层碳储量呈显著正相关关系(P<0.05),土壤层碳储量与森林生态系统碳储量呈极显著相关关系 (P<0.01),说明土壤层对整个生态系统碳储量的贡献最大。其他各组分之间相关关系均达不到显著水平。【结论】温州市森林生态系统碳密度略高于浙江省平均水平,但是低于全国平均水平,因此可以通过合理的森林经营管理措施提高森林碳密度。  相似文献   

14.
通过两阶抽样法对浙江省仙居县487万hm2公益林区域内,111个生态公益林样地的常绿阔叶林、针阔混交林、松木林和杉木林、毛竹林、灌木林等6种主要林型的生物量动态变化及其分布进行了调查和分析。结果表明:仙居县杉木林群落生物量最高,平均为9975 t/hm2;针阔混交林次之,群落生物量平均为9613 t/hm2;灌木林群落生物量最低,平均为3880 t/hm2。如果采用本地的参数和按类型进行详尽的调查和统计,得到的生物量和生产力估算将更可靠。  相似文献   

15.
广州典型森林土壤有机碳库分配特征   总被引:1,自引:0,他引:1  
 对广州2种典型森林土壤碳库分配特征进行了研究,结果表明:① 两种森林土壤有机碳(SOC)表层含量及其差异程度最高,随土壤深度增加,差异逐渐减小。马尾松林SOC密度范围为55.54~66.69 t/hm2,常绿阔叶林SOC范围为84.91~151.16 t/hm2。② 两种森林土壤活性有机碳(AOCs)含量为马尾松林<常绿阔叶林;各种AOC分配比例均随龄级增长而升高。③ 两种森林土壤的水溶性有机碳(WSC)、易氧化态碳(EOC)和微生物量碳(MBC)含量分别与SOC相关性达到极显著水平,轻组碳(LFC) 与颗粒性碳(POC)含量分别与SOC相关性达到显著水平。④ 幼龄林与中龄林的土壤碳库大于相应的地上部植被碳库,而成龄林的土壤碳库小于植被碳库;土壤碳库占森林生态系统总碳库的比例随着生物量的增长呈下降趋势。  相似文献   

16.
研究23 a生杉木纯林、木荷纯林和杉木木荷混交林的土壤碳、氮、碳氮比(C/N)之间的剖面分布差异.结果表明:杉木纯林、木荷纯林和杉木木荷混交林地的表层土壤(0~10 cm)碳、氮元素含量最高并逐层递减,且杉木木荷混交林碳、氮元素含量明显高于木荷纯林和杉木纯林(P0.05);在向下3个土层中3类林分的碳、氮元素含量差异较小(P0.05),杉木木荷混交林的优势并不明显,低于木荷纯林和杉木纯林.与纯林相比,杉木木荷混交林在表层土壤中对土壤碳、氮含量有显著提高,可能是因为杉木与木荷混交改变了林冠结构,有利于落叶分解.  相似文献   

17.
在鸡公山天然落叶栎林中设置样地,调查分析了落叶栎林生态系统土壤碳密度和碳储量,测定了林下植被层和凋落物层碳储量,并用生物量方程法估测了乔木层各组分的生物量及碳储量.结果表明:落叶栎林生态系统总碳储量为156.60 t·hm-2,空间分布特征表现为乔木层(81.65 t·hm-2)>土壤层(66.13 t·hm-2)>凋落物层(7.50 t·hm-2)>灌木层(1.09 t·hm-2)>草本层(0.23 t·hm-2).在不同采样层次上碳含量存在明显差异.土壤层碳储量随着海拔升高而显著增加(p<0.05),随着土层深度增加而显著降低(p<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号