首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为获得能高效水解大豆异黄酮糖苷的芽孢杆菌,利用七叶苷平板分离法从动物的新鲜粪便中筛选产β-葡萄糖苷酶的芽孢杆菌菌株,然后对酶活最高的菌株进行种属鉴定和水解大豆异黄酮糖苷的研究.结果显示:筛选到1株酶活力较高的芽孢杆菌R2-2,经鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens);该菌株有较高的糖苷水解能力,黄豆苷水解率最高达到53.65%,染料木苷为48.80%.  相似文献   

2.
以不同来源的β-葡萄糖苷酶水解刺梨槲皮素-3-O-芸香糖苷、槲皮素-3-O-鼠李糖苷和槲皮素-3-O-葡萄糖苷,探讨提高刺梨黄酮苷元释放能力的生物转化途径。以槲皮素含量与糖苷转化率为指标,采用高效液相色谱法对来源于嗜酸乳杆菌、木霉和杏仁的β-葡萄糖苷酶水解3种槲皮素糖苷的转化率及槲皮素含量进行动态监测,以酶解时间、酶解pH值、酶解温度和酶用量(酶与底物质量比)为单因素,考察各因素参数独立变化对指标的影响,再以Box-Behnken 方法研究各因素及其交互作用对转化率的影响,优化工艺条件。杏仁β-葡萄糖苷酶水解3种糖苷转化所得槲皮素含量最高,对不同底物的转化率由高到低依次为槲皮素-3-O-葡萄糖苷(74.10%)、槲皮素-3-O-芸香糖苷(64.30%)、槲皮素-3-O-鼠李糖苷(31.80%)。杏仁β-葡萄糖苷酶优化水解工艺条件为酶解时间28.90min,酶解pH值4.9,酶解温度52℃,酶用量0.08%。此条件下得到槲皮素-3-O-芸香糖苷转化率71.48%,槲皮素-3-O-鼠李糖苷转化率36.32%,槲皮素-3-O-葡萄糖苷转化率77.86%。  相似文献   

3.
海藻酸钠固定化β-葡萄糖苷酶的制备及其性质研究   总被引:1,自引:0,他引:1  
在活性炭、明胶等8种固定化载体筛选的基础上研究了以海藻酸钠为载体,戊二醛为交联剂固定化β-葡萄糖苷酶的条件,并对固定化酶的酶学性质及其在催化制备大豆异黄酮活性苷元染料木素中的应用进行了研究。β-葡萄糖苷酶在0.20%戊二醛溶液中交联2 h后再与20 g/L海藻酸钠混合,然后逐滴加到4 g/LCaCl2溶液中,固化1 h后过滤、洗涤得固定化β-葡萄糖苷酶,固定化酶的酶活回收率为83.67%。固定化酶的最适温度、热稳定性、pH值稳定性以及与底物的亲和力都有所提高,最适pH值基本不变。该固定化酶重复使用6次后其活力仍保持90.94%,染料木苷转化率达60.02%。  相似文献   

4.
槐(Sophora japonica)豆荚用甲醇提取,采用硅胶柱层析、Sephadex LH-20凝胶柱层析、MCI柱层析和反相柱层析进行化学成分分离纯化,从中分离得到8个化合物。根据波谱分析和理化性质对化合物结构进行鉴定,鉴定结构为山柰酚(1)、山柰酚3-O-β-槐糖苷(2)、山柰酚3-O-α-L-鼠李糖基(1→6)-β-D-葡萄糖苷(3)、山柰酚3-O-α-L-鼠李糖基(1→4)-β-D-葡萄糖苷(4)、山柰酚3-O-α-L-鼠李糖苷-7-O-β-D-葡萄糖苷(5)、染料木素(6)、染料木苷(7)和槐属双苷(8)。其中,化合物4和5为首次从槐属植物中离得到,化合物2和7为首次从该植物中分离得到。  相似文献   

5.
葡萄糖苷酶(β-Glucosidase,EC 3.2.1.21)可以催化水解芳香基与糖基之间的糖苷键,被广泛应用于食品工业中对天然活性产物的加工、增效.本研究从一株芽孢杆菌的发酵液中,分离得到了一种具有β葡萄糖苷酶活性的胞外酶,命名为Fbg A.该酶以单体形式存在,分子量约为83 k Da,在p H7.0和40℃条件下酶活性最高,该酶在其最适反应条件下可持续工作近1个月的时间.酶学动力学分析表明,Fbg A可专一性水解芳基葡萄糖苷中的β(1,4)糖苷键,对大豆异黄酮的两种主要活性成分染料木苷(Genistin)和大豆苷(Daidzin)具有高亲和性,其米氏常数(Km值)分别为0.34和1.99 mol/L.利用高效液相色谱检测到,Fbg A(31 U/m L)可在3 h内,将大豆粉提取物中1.03 mmol/L的染料木苷和0.86 mmol/L的大豆苷完全水解为更易被人体吸收的苷元形式,对应的生产率分别为0.50和0.33 mmol/Lh.Fbg A较高的大豆异黄酮水解活性和良好的酶活力稳定性使其具有可应用于食品工业中的豆制品加工的潜力.  相似文献   

6.
建立了纳豆及纳豆胶囊中大豆异黄酮的高效液相色谱分析方法,该方法重复性及样品稳定性良好.实验对原料黄豆、纳豆和纳豆胶囊样品采用石油醚索氏脱脂后,对固体样品进行乙醇回流提取,分析了4种大豆异黄酮组分,即大豆苷、染料木苷、大豆素和染料木素.结果表明,原料黄豆总异黄酮质量比为1 260 mg/kg,纳豆比原料黄豆总异黄酮含量明显高约30%,纳豆胶囊比原料黄豆总异黄酮含量高约11%.  相似文献   

7.
樟树叶化学成分研究   总被引:1,自引:0,他引:1  
为研究樟属植物香樟树叶的化学成分,运用正相和反相硅胶柱层析、半制备型高效液相色谱法对樟树叶提取分离纯化,用波谱技术鉴定其结构.结果表明:从该植物中分离得到5个化合物,其中1个为木脂素类化合物,4个为黄酮苷类化合物,分别为(8R,8'R)-3,3',4,4'-四甲氧基-9-氧代-8-8',9-O-9'-木脂素(I),槲皮素-3-Ο-α-L-鼠李糖苷(II),山奈酚-3-Ο-β-D-葡萄糖基(6→1)-α-L-鼠李糖苷(III),芦丁(IV),槲皮素-3-Ο-β-D-葡萄糖苷(V).  相似文献   

8.
用混合培养法提高木霉A10的纤维素酶活性   总被引:5,自引:0,他引:5  
陕西省微生物研究所纤维素酶研究基地用纤维素酶生产的菌绿色木霉A10(Trichoderma viride A10),具有较高的产生内切葡聚糖酶和外切葡聚糖酶的能力,但其β-葡萄糖苷酶的产生能力较低。用改进的培养基和接种方法混合培养木霉和曲霉,不仅使β-葡萄糖苷酶活力比单纯培养木霉时提高3.2倍,而且內切和外切葡聚糖酶也同时增长24%和5%,滤纸酶活性增加59%.这种混合培养的方法为生产较高β-葡萄糖苷酶的纤維素酶提供了可能.  相似文献   

9.
β-葡萄糖苷酶是纤维素酶的重要成分之一,负责纤维素的最终降解,在畜牧生产、食品行业、能源和医疗卫生等领域都有重要应用.天然来源的β-葡萄糖苷酶表达水平低、分离纯化困难,阻碍了β-葡萄糖苷酶的进一步应用.利用蛋白质工程技术对β-葡萄糖苷酶进行体外改造,提高其糖苷水解或者低聚糖苷合成活性,是β-葡萄糖苷酶研究及应用的趋势.就β-葡萄糖苷酶体外分子改造的研究进展及成果进行综述,比较不同分子改造策略的特点,总结β-葡萄糖苷酶分子改造过程中的一般规律,展望β-葡萄糖苷酶分子改造的研究及发展方向,为微生物来源的β-葡萄糖苷酶的体外分子改造研究提供参考.  相似文献   

10.
丝状真菌里氏木霉(Trichoderma reesei)外切几丁质酶具有β-N-乙酰氨基葡萄糖苷酶活性.根据里氏木霉基因组数据库获得了一个编号为21725的外切几丁质酶nagl基因序列,根据检索结果,从里氏木霉QM9414基因组DNA中克隆获得1.9kb的基因片段.构建了以cbhl为启动子和终止子的重组质粒pCbhNag,与含有pyr4基因的质粒pSKpyr4共转化里氏木霉pyr4缺陷株RutC30△U3.共得到99个转化子,初筛得到5株乙酰氨基葡萄糖苷酶酶活较高的转化子,其中N3菌株的β-N-乙酰氨基葡萄糖苷酶酶活可达26.65 U/mL,而出发菌株的胞外几丁质酶几乎无酶活.成功实现了里氏木霉几丁质酶的克隆及同源表达.  相似文献   

11.
虎杖中虎杖苷的微生物发酵转化研究   总被引:4,自引:0,他引:4  
从中药材虎杖中筛选到一株具有转化虎杖苷能力的根霉菌株T-34,利用该茵株产生的β-葡萄糖苷酶能将虎杖苷转化为白藜芦醇.虎杖的液体发酵动力学研究结果显示:根霉菌T-34能够直接利用虎杖煮提液中的碳源、氮源等作为其生长所需的营养,并且产生的β-葡萄糖苷酶与底物虎杖苷的转化具有相对应的关系,用HPLC测得虎杖苷的转化率达98%.  相似文献   

12.
利用柱色谱、薄层色谱、高效液相色谱及波谱分析等分离技术对楤木根进行了化学成分研究.从云南产楤木根的95%乙醇提取物中分离并鉴定得到8个化合物,分别鉴定为:3-O-β-D-葡萄糖苷(1)、芹黄素-7-O-α-L-鼠李糖苷(2)、咖啡酸乙酯(3)、反式阿魏酸(4)、咖啡酸甲酯(5)、3-甲氧基-4-羟基苯甲醛(6)、香兰醇(7)、β-谷甾醇(8).其中,化合物1~7为首次从该种植物中分离得到.  相似文献   

13.
β-葡萄糖苷酶(Ec3.2.1.21)属于糖苷水解酶家族3,它能够水解非还原性末端的β-D葡萄糖苷键,释放出游离的葡萄糖及相应的配基。β-葡萄糖苷酶是纤维素降解中的关键酶,对于可再生资源纤维素的利用具有十分重要的意义。本研究从水稻土壤中分离得到β-葡萄糖苷酶基因pds5,将其克隆到表达载体pET32a(+)中,转化BL21大肠杆菌中,并诱导表达该基因。重组BL21大肠杆菌用IPTG诱导后,所提取的酶蛋白具有β-葡萄糖苷酶的活性,经SDS-PAGE分析,确定其相对分子质量为83 kD。通过控制pH和温度的方法,测得该酶酶活最适pH为7.0,最适温度为37.5℃。  相似文献   

14.
研究蓝盆花Scabiosa comosa Fisch花序的化学成分,及其抗氧化活性和抑制α-葡萄糖苷酶活性.反复采用硅胶柱色谱,RP-C18柱色谱,Sephadex LH-20,MCI,制备型高效液相色谱等方法分离纯化窄叶蓝盆花花序的化学成分,利用多种波谱技术(UV,NMR,LC-MS)鉴定化合物结构.进一步对这些化合物的DPPH游离基清除率和α-葡萄糖苷酶活性抑制率进行了测定.本实验从蓝盆花花序中分离鉴定出10个化合物,7个酚类化合物,2个萜类化合物和1个甾醇化合物.其中芹菜素-4′-O-β-葡萄糖苷(2),芹菜素-7-O-α-阿拉伯糖(1-6)-β-葡萄糖苷(6)和3β,23-二羟基乌索-12-烯-28-酸(9)为首次从本属植物中分离得到.体外活性实验结果显示,木犀草素(3),木犀草素-7-O-β-葡萄糖苷(4)和绿原酸(7)具有显著的清除DPPH游离基活性,EC50值分别为19、43和26μg·mL-1;另外,黄酮苷元芹菜素(1)和萜类化合物熊果酸(8)及3β,23-二羟基乌索-12-烯-28-酸(9)具有抑制α-葡萄糖苷酶的活性.  相似文献   

15.
为研究独一味[Lamiophlomis rotata(Benth.)Kudo]地上部分的化学成分,采用硅胶、MCI柱色谱、半制备型高效液相色谱等方法分离了化合物,并根据理化性质、波谱数据分析对其进行了结构鉴定.结果从独一味乙酸乙酯部位分离到了11个化合物,分别鉴定为木犀草素-7-O-β-D-吡喃葡萄糖苷(1)、芹菜素-7-O-β-D-吡喃葡萄糖苷(2)、β-谷甾醇(3)、毛蕊花糖苷(4)、红景天苷(5)、咖啡酸(6)、3,4-二羟基苯甲酸(7)、龙胆酸(8)、3,4-二羟基苯乙醇(9)、2,4,5-三羟基肉桂酸(10)、2E-4-羟基己烯酸(11).其中化合物5,811为首次从该植物中分离得到.  相似文献   

16.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting脱盐柱、Source15Q阴离子交换柱、Source 15 S阳离子交换柱、HiTrap 16/60 Sephacryl S 200 HR凝胶过滤等技术,分离纯化3种来源里氏木霉、黑曲霉、里氏木霉与黑曲霉混合纤维素酶液中的β-葡萄糖苷酶。结果表明,经SDS PAGE电泳鉴定均为电泳纯,测得黑氏木霉、黑曲霉单独培养β-葡萄糖苷酶相对分子质量分别为68、129 ku,而混合菌培养分离得到两种β-葡萄糖苷酶分子质量大小分别为66.2、134 ku。与单独培养的β-葡萄糖苷酶相似。3种来源的β-葡萄糖苷酶经多步分离纯化后的纯化倍数分别为37.25、40.21、30.12,酶活回收率分别为20.1 2%、23.21 %、28.56 %。  相似文献   

17.
β-木糖苷酶是木聚糖水解酶系中的重要一员,可以和木聚糖酶协同水解木聚糖,被认为是木聚糖水解的关键酶之一.近年来,研究人员发现除水解木聚糖外,β-木糖苷酶还可以水解含有木糖基的化合物,如7-木糖-10-去乙酰紫杉醇、部分人参皂苷和三七皂苷等,产生具有生物活性的物质.此外,部分微生物来源的β-木糖苷酶还具有转糖苷功能,可以...  相似文献   

18.
采用高效液相(HPLC)和紫外分光光度(UV)两种分析方法测定了以东紫苏为原料制得的产品中木犀草素-7-O--βD-葡萄糖苷的含量.结果表明,两种方法无显著性差异,均可用于产品质量控制.  相似文献   

19.
云南产玫瑰花化学成分研究   总被引:1,自引:0,他引:1  
从云南产玫瑰花干花瓣经甲醇提取,硅胶柱层析,高效液相色谱分离提纯得到6个化合物,通过波谱方法分别鉴定为山奈酚-7-O-β-D-半孔糖皮蒽(1),山奈酚(2),槲皮黄酮(3),黄杉素-4'-甲基醚(4),(-)-表儿茶素(5),二氢染料木素(6).其中化合物(2)、(3)、(5)、(6)为首次从该植物中分离得到.  相似文献   

20.
采用反转录PCR方法从绿色木霉AS3.3711的总mRNA中获得了编码β-葡萄糖苷酶Ⅰ(BGL Ⅰ)的基因bgl1.序列测定表明该基因片段长2235 bp,编码744个氨基酸残基,与里氏木霉的bgl1序列完全相同.将其插入高拷贝数整合型表达载体PScIKP,构建了重组质粒PScIKP-bgl1.线性化后转化工业酿酒酵母AS2.489菌株,利用高浓度G418筛选高抗转化子,经SDS-PAGE蛋白电泳证明获得了能高效稳定分泌表达重组BGL Ⅰ的转化子.重组BGL Ⅰ酶能直接水解培养液中的纤维二糖,在84 h测得酶活最大值为0.978 u/mL.重组BGL Ⅰ酶最佳反应温度为60℃,最适反应pH为4.0~5.0,并且能以纤维二糖为惟一碳源发酵乙醇,发酵90h能够用重铬酸钾氧化比色法检测到乙醇的体积分数为0.51%.结果表明:成功克隆并在酿酒酵母中表达了一种高活性的β-葡萄糖苷酶,对于工业上直接利用纤维素为惟一碳源发酵生产乙醇的研究有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号