首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根瘤菌在共生固氮过程中因放H2所消耗的能量约占固所氮总能量的40%-6%。吸氢酶则能回收和利用固氮过程所放的H2,养活能量损失,从而提高共生固氮效率。在厌氧条件下,加入防止酶蛋白聚合的试剂,利用DEAE-纤维素和Sephacry S-200柱层析,从自养性大豆根瘤菌和花生根瘤菌类菌体中分离并提纯膜结合态氢酶。纯化的两种氢酶表现相近的分子特征:均含有大(60kD,65kD)、小(30kD,35kD)两个亚基,均为NiFe-氢酶,并且有较高的吸H2活性。大豆根瘤菌氢酶的纯酶组分不含Cyt b599。花生根瘤菌L8-3菌株能进行化能自养生长,诱导出高吸H2活性。根瘤菌的吸H2能明显提高固氮活性。从具有高吸H2活性的花生根瘤菌中分离并克隆吸氢基因,采用PCR和探针杂交技术,获得含有吸氢基因的质粒pZ-55。利用多种限制性内切酶构建了质粒pZ-55的物理图谱。通过三亲本杂交,将含吸氢基因的重组质粒转移到不吸H2的花生和毛豆根瘤菌中,所获得的结合株在自生和共生条件下均表达吸H2活性。以结合株接种大田花生,获得的共生根瘤的吸H2活性比接种受体株提高4倍,花生叶片和种子的含N量、产量分别提高1.7%、8.9%和9.6%。  相似文献   

2.
Hydrogenases are enzymes that can reversibly split molecular hydrogen. Study on the structure of the active site and the mechanism of catalysis has drawn great attention because the results may be useful for the design of cheap biomimetic hydrogen catalysts for fuel cells, or as model for the photoproduction of H2. At one time the active site was generally considered to be composed of mononuclear nickel complex with ligands from the polypeptide. A breakthrough in the understanding of the structure of [NiFe] Hases occurred with the resolution crystal structure ofD. gigas [NiFe] Hases in 1995. The unexpected result challenged the previously reported spectroscopic studies and caused some academic arguments. Some methods and results used for insight into [NiFe] Hases have to be reconsidered. Different viewpoints concerning the structure of active site of [NiFe] Hases in different periods and some remaining questions will be presented.  相似文献   

3.
To increase H2 yield of Rhodospirillum rubrum in two-stage hydrogen production process, two deletion mutants were constructed. One is single mutant designated R. rubrum UR801 that deleted hupL gene encoding the large subunit of uptake hy- drogenase, and the other is a double mutant desig- nated R. rubrum UR805 lacked both draTGB encod- ing regulators for the activity of nitrogenase and hupL. Comparing H2 yields of two mutants with R. rubrum UR2 (wild type) and UR472 (ΔdraTGB) under differ- ent light conditions, the results showed that the H2 yield of R. rubrum UR801 under continuous light is the highest (5700 mL of H2 per liter culture), and it is 1.56, 2.24 and 2.32-fold that of R. rubrum UR2, UR472 and UR805, respectively. However, the total H2 yield of R. rubrum UR805 in two-stage hydrogen production process is the highest (4303 mL/L), and it is 1.35, 1.21 and 1.04-fold that of R. rubrum UR2, UR801 and UR472, respectively. Thus, R. rubrum UR805 might be a valuable strain to produce a large amount of hydrogen in two-stage hydrogen produc- tion process.  相似文献   

4.
0 IntroductionHydrogenisaclean ,effectiveandrenewableener gy ,andisanultimatereplacementforfossilhydrocarbonfuelsinthefuture .Biohydrogenproductionfromwasteisattractiveduetoenergyrecoveryandenvironmentalcleanupatthesametime .Biohydrogengenerationbypho to andnon photosyntheticbacteriahasbeenstudiedex tensively[1 4 ] .Ingeneral ,thesemicroorganismscontainFe Sproteins .Forexample ,inhydrogen producingClostridiumcellulolyticumtherearehydrogenase ,NADH fdreductase ,fd NADP+reductase ,fd NAD+…  相似文献   

5.
Hydrogen is an energy source for hydrothermal vent symbioses   总被引:1,自引:0,他引:1  
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.  相似文献   

6.
Shomura Y  Yoon KS  Nishihara H  Higuchi Y 《Nature》2011,479(7372):253-256
Membrane-bound respiratory [NiFe]-hydrogenase (MBH), a H(2)-uptake enzyme found in the periplasmic space of bacteria, catalyses the oxidation of dihydrogen: H(2)?→?2H(+)?+?2e(-) (ref. 1). In contrast to the well-studied O(2)-sensitive [NiFe]-hydrogenases (referred to as the standard enzymes), MBH has an O(2)-tolerant H(2) oxidation activity; however, the mechanism of O(2) tolerance is unclear. Here we report the crystal structures of Hydrogenovibrio marinus MBH in three different redox conditions at resolutions between 1.18 and 1.32??. We find that the proximal iron-sulphur (Fe-S) cluster of MBH has a [4Fe-3S] structure coordinated by six cysteine residues--in contrast to the [4Fe-4S] cubane structure coordinated by four cysteine residues found in the proximal Fe-S cluster of the standard enzymes--and that an amide nitrogen of the polypeptide backbone is deprotonated and additionally coordinates the cluster when chemically oxidized, thus stabilizing the superoxidized state of the cluster. The structure of MBH is very similar to that of the O(2)-sensitive standard enzymes except for the proximal Fe-S cluster. Our results give a reasonable explanation why the O(2) tolerance of MBH is attributable to the unique proximal Fe-S cluster; we propose that the cluster is not only a component of the electron transfer for the catalytic cycle, but that it also donates two electrons and one proton crucial for the appropriate reduction of O(2) in preventing the formation of an unready, inactive state of the enzyme.  相似文献   

7.
8.
0IntroductionHydrogenase(H2ase)has beeninvestigatedin a va-riety of bacterial groups since it was firstly reported in1931[1-3].Cyanobacteria contain two different types ofH2ase,uptake H2ase(EC1.12.7.2)and bidirectional orreversible H2ase(EC1.12.1.12).Uptake H2ase is in-duced under N2-fixing situation,mainly confinedin hete-rocysts.Bidirectional H2ase is constitutively synthesized,active in both heterocysts and vegetative cells present inboth N2-fixing and non-N2-fixing conditions.This en…  相似文献   

9.
Hydrogenases are abundant enzymes that catalyse the reversible interconversion of H(2) into protons and electrons at high rates. Those hydrogenases maintaining their activity in the presence of O(2) are considered to be central to H(2)-based technologies, such as enzymatic fuel cells and for light-driven H(2) production. Despite comprehensive genetic, biochemical, electrochemical and spectroscopic investigations, the molecular background allowing a structural interpretation of how the catalytic centre is protected from irreversible inactivation by O(2) has remained unclear. Here we present the crystal structure of an O(2)-tolerant [NiFe]-hydrogenase from the aerobic H(2) oxidizer Ralstonia eutropha H16 at 1.5?? resolution. The heterodimeric enzyme consists of a large subunit harbouring the catalytic centre in the H(2)-reduced state and a small subunit containing an electron relay consisting of three different iron-sulphur clusters. The cluster proximal to the active site displays an unprecedented [4Fe-3S] structure and is coordinated by six cysteines. According to the current model, this cofactor operates as an electronic switch depending on the nature of the gas molecule approaching the active site. It serves as an electron acceptor in the course of H(2) oxidation and as an electron-delivering device upon O(2) attack at the active site. This dual function is supported by the capability of the novel iron-sulphur cluster to adopt three redox states at physiological redox potentials. The second structural feature is a network of extended water cavities that may act as a channel facilitating the removal of water produced at the [NiFe] active site. These discoveries will have an impact on the design of biological and chemical H(2)-converting catalysts that are capable of cycling H(2) in air.  相似文献   

10.
[M(CN)8]n-(M=Mo,W,Nb;n=3,4)是一类重要的磁性材料构筑单元.化合物(C6H6N3)4[Mo(CN)8].H2O的晶体结构属于三斜晶系的P1-空间群,其不对称单元由1个[Mo(CN)8]4-,4个质子化的苯并三唑有机阳离子C6H6N3+和1个结晶水组成.[Mo(CN)8]4-离子中,Mo中心处于扭曲的反四棱柱配位环境.8个未配位的氰基氮原子作为氢键的受体,有机阳离子上质子化的氮原子和结晶水作为氢键的给体,形成了丰富的氢键作用,这些氢键作用连同部分有机阳离子间的π-π堆积、阴阳离子间的静电力和Van Der Waals力构筑成三维超分子网络.  相似文献   

11.
花生根瘤菌x_(-1)菌株在自生条件下和合适的培养基中,可诱导固氮酶及氢酶的活性,固氮酶反应产生的H_2(内源H_2)能直接诱导氢酶,氢酶活性表达的时间进程是在固氮反应之后,在外源H_2的存在下,固氮酶和氢酶则可同时表达,不同有机碳化合物对固氮酶与氢酶的影响不同,丙酮酸明显提高固氮活性,但对氨酶没有促进作用,蔗糖对固氮活性没有促进作用但对吸氢表现促进作用,分子H_2明显提高固氮活性,2.4-二硝基苯酚抑制需H_2的固氮活性,在外源H_2存在下其抑制作用更明显,铵抑制固氮酶的形成、固氮酶受铵抑制时氢酶也相应受到抑制。  相似文献   

12.
Gene deletion vector pXL05(pKC1139::△olmA1 △olmA4) was used to disrupt oligomycin PKS encoding genes (olmA ) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin, olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin Bla, Blb, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mutants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.  相似文献   

13.
通过NiSO4·6H2O与4,4'-联吡啶在H2O-CH3OH混合溶液中反应,制备了配位聚合物[Ni(4,4′-bpy)(H2O)4]·(SO42-)·(CH3OH)·(H2O),并使用X射线单晶衍射技术对其结构进行了表征.此配合物含有三种分别沿[100]、[010]、[110]方向排列的无限长链,并通过其配位水分子与位于层间位置的SO42-形成氢键而连接成为超分子结构.  相似文献   

14.
3,3,′4,4′-偶氮苯四甲酸配合物的合成、结构与表征   总被引:2,自引:2,他引:0  
合成了3,3,′4,4′-偶氮苯四甲酸(H4L)及锰的配合物[Mn2L(H2O)10].4H2O,并用元素分析、荧光光谱、XRD粉末衍射和单晶衍射仪对它们进行了表征。研究结果表明化合物H4L.2H2O通过O-H…O氢键的作用构成2D的网络结构;配合物[Mn2L(H2O)10].4H2O中心锰离子为六配位,其中溶剂分子水和配体L均参与配位,分子间通过O-H…O氢键构成了1D的Z字链结构,而1D链之间通过O-H…O和O-H…N形成2D的网络结构。配合物具有很好的荧光特性。  相似文献   

15.
Supramolecular systems are broadly defined as multi-component molecular assemblies, in which the components are held together by a variety of weaker non-covalent interactions, such as hydrogen bonding, π-π stacking,and hydrophobic and lipophilic interac…  相似文献   

16.
用射频磁控溅射方法制备多层膜,研究了双层膜NiO/NiFe的矫顽力Hc和交换耦合场Hex与反铁磁层NiO、铁磁层NiFe厚度的关系,结果表明:NiO厚度为70nm时,Hex最大;Hc随NiO厚度增大而增大.当NiFe厚度增加时,Hex近似线性减小;而Hc则随NiFe厚度增大开始有缓慢增加,然后才减小.对于NiO(70nm)/NiFe(t1)/Cu(2.2nm)/NiFe(t2)自旋阀多层膜材料(括号内的量表示厚度),研究了NiFe膜厚度对磁阻效应的影响,结果表明:被钉扎层NiFe的厚度为3nm,自由层NiFe的厚度为5nm时,MR值最大,约为1.6%.  相似文献   

17.
以磷钼钒多阴离子[ PMo11 VO40]^4-、[ PMo10 V2 O40]^5-、[ PMo9 V3 O40]^6-为构建基元,分别和1-辛基-3-甲基咪唑阳离子通过离子交换反应制备三种多金属氧酸盐。以这三种多金属氧酸盐为氧化性催化剂,可溶性淀粉为原料,双氧水为氧化剂,应用于淀粉氧化实验并比较它们的催化氧化活性。试验结果显示,三种催化剂均具有较好的催化性能,其中用[Omim]4H[PMo10V2O40](OP-MoV2)作催化剂时氧化淀粉中的羧基含量最高。  相似文献   

18.
本文将4,4'-二环己二酮单缩酮与季戊四醇反应,分别制得化合物3,15-双{8-(1,4-二氧杂螺[4.5]癸烷基)}-7,11,18,21-四氧杂三螺[5.2.2.5.2.2]二十一烷(1)和3,15-聚{7,11,18,21-四氧杂三螺[5.2.2.5.2.2]二十一烷}(2),对其^1H—NMR的特征进行了讨论.发现三螺环中(B,C)原季戊四醇中的cH:不裂分,是个单峰;而A、D环上的CH2(H1,H5,H13,H17)受手性轴的影响而裂分成多重峰(如无手性轴的影响应为三峰).表明手性轴对手性的影响主要集中在轴的外侧,对中心影响较小.所获结论对不对称合成中进行手性催化剂和手性固定相的设计具有理论意义.  相似文献   

19.
合成并测定了一种新的三维超分子体系——[Cd(C6H4O2N)2(H2O)4]的晶体结构.该晶体属于三斜晶系,Pī空间群,a=6.4461(13),b=6.9332(14),c=9.4411(19)魡,α=94.75(3)°,β=104.70(3)°,γ=112.08(3)°,V=370.63(13)魡3,μ=1.518mm-1,Z=1,M=428.67,Dc=1.921g/cm3,F(000)=214,λ(MOKα)=0.71073魡,最终偏离因子R1=0.0405,ωR2=0.1236.该超分子体系的基本结构单元[Cd(C6H4O2N)2(H2O)4]中,Cd处于八面体的中心;各个结构单元之间通过氢键相互连接,形成无限伸展、层状结构的三维超分子体系.  相似文献   

20.
Ethanol is the main byproduct of anaerobic H2-producing fermentation in Klebsiella oxytoca HP1. Two moles of NAD(P)H are consumed to yield one mole of ethanol that may decrease bacterial hydrogen production. In this article the adhE gene that codes for acetaldehyde dehydrogenase was disrupted for the first time. A homologous recombination vector pTA-Str was constructed in which the adhE gene was disrupted by inserting an aminoglycoside-3'-adenyltransferase (aadA) gene. As expected, the vector includes the insertion 5′-adhE-aadA-adhE-3′. The amplified DNA fragment 5′-adhE-aadA-adhE-3′ from pTA-Str was transformed into K. oxytoca HP1 and one recombinant was obtained. PCR analysis of the resulting genomic DNA indicated the appropriate deletion and insertion. Compared with the H2-production of wild type K. oxytoca HP1, the hydrogen yield of the mutant increased by 16.07% and ethanol concentration decreased by 77.47%, suggesting that inactivation of the adhE gene in K. oxy- toca HP1 is a potential method for enhancing bacterial H2-production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号