首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
局部环上辛变换的一个分解定理   总被引:2,自引:0,他引:2  
域上辛群中元素σ可以分解成辛平延之积,其因子的最少个数叫σ的分解长度,记以 l(σ)。O'Meara 在1976年给出:如果σ不是双曲的,则 L(σ)=resσ;如果σ是双曲的,则 l(σ)=resσ+1.刘长安在1980年,用矩阵计算的方法,也得到了相同的结果.最近,张海权、张永正在φ—满射环上得出:(i)如果σ不是双曲的,且σ不是模恒等元素,则 resσ+ρ_σ≥L(σ)≥resσ—ρ_σ;(ii)如果σ是双曲的,则 resσ+1+ρ_σ≥L(σ)≥resσ+1·-ρ_σ.文献[1],[2]中剩余数规定为 resσ=dimR_σ,R_σ是σ的剩余空间;文献[3]中  相似文献   

2.
在局部环上对辛群的生成问题进行研究,给出了辛变换的亏失数概念,将局部环上辛群的Kernel(λ)的元表示为辛平延之积.  相似文献   

3.
设σ是环R的一个自同构 .证明了如果R是σ 右p q Baer环 ,并且Sσl 的任意元e满足 :对任意的r∈R及任意非负整数i,erσ-i(e) =rσ-i(e) ;对任意的r∈R ,若re=0 ,则rσ(e) =0 ,那么环R的斜多项式扩张R[x ,σ]是右p q Baer环  相似文献   

4.
讨论了局部环上辛群的生成系是辛平延的集合,推广了域的相应的结论.  相似文献   

5.
环R称为单位正则环,如果对任何x∈R,有可逆元u∈R使得x=xux.文章利用零化子刻画了单位正则环,证明了正则环是单位正则环当仅当l(a)∩l(b)=l(d)时,有y∈R使得l(a)∩l(b)=t(a+by),当仅当l(a)=l(b)时,有u∈U(R)使得a=bua.  相似文献   

6.
环R称为单位正则环,如果对任何x∈R,有可逆元u∈R使得x=xux.文章利用零化子刻画了单位正则环,证明了正则环是单位正则环当仅当l(a)∩l(b)=l(d)时,有y∈R使得l(a)∩l(b)=l(a+by),当仅当l(a)=l(b)时,有u∈U(R)使得a=bua.  相似文献   

7.
拟Abel环   总被引:2,自引:0,他引:2  
设R是一个环,M是双R-模.若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件: e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.  相似文献   

8.
设T=(V,A)是竞赛图。以△~ 、△~-表示T的最大出次、最大入次。p=|V|是T的点数。令R={υ|d~ (υ)=△},S={υ|d(υ)=△} 定理设T是竞赛图,则总存在r∈R,s∈S从r到s有长度为l的路(l=2,3,…p-1)。证明不妨设T不是正则竞赛图,并且p≥5。于是△~ ≥p/2,△≥p/2。任取 r∈R,s∈S,则T中总存在长度≤2的路P,若(r,s)∈A, 记σ(r)={υ|(r,υ)∈A},I(s)={υ|(υ,s)∈A} 若σ(r)∩I(s)≠φ,则存在从r到s的长度为2的路。  相似文献   

9.
证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈MEl(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈MEl(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k2=0时,对每个a∈R,总有Rk+R(ka-1)=R.  相似文献   

10.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

11.
证明了如下结果:1)环R是左quas i-duo环当且仅当对任意x J(R),y∈R,Ry R(yx-1)=R;2)环R是左quas i-duo环当且仅当R是左极小A be l环和左M ELT环.  相似文献   

12.
证明了如下结果:(1)如果X=∏τ∈∑Xτ是λ-超仿紧空间,则X是σ-集体正规空间当且仅当F∈∑ω,X=∏τ∈∑Xτ是σ-集体正规空间。(2)设X=∏i∈ωXi是可数仿紧的,则下列三条等价:X是σ-集体正规的;F∈[ω]ω,X=∏i∈FXi是σ-集体正规的;n∈ω,∏i≤nXi是σ-集体正规的。  相似文献   

13.
令 R 是局部环,GL_n(V)是 R 上的线性群,本文在 GL_n(V)中给出了强平延定义及 GL_n(V)中元素由强平延表出的最小长度定理。  相似文献   

14.
R=σ∈GRσ是有单位元1的交换的G-分次环(在G不需言明时就称R为分次环),并且引入了分次环上的分次w-模等相关概念.证明了:1)设J是R的有限生成分次理想,则J∈GVgr(R)当且仅当J∈GV(R);2)设M是分次模,σ∈G.若M是分次GV-无挠模(或分次GV-挠模),则M(σ)也是分次GV-无挠模(或分次GV-挠模);3)设M是分次模,且是w-模,N是M的分次子模,则N是分次w-模当且仅当N是w-模.特别地,R中的任何分次w-理想都是w-理想.  相似文献   

15.
考虑一阶中立型时滞微分方程d/dt[x(t) p(t)x(t-τ)] f(t,x(t-σ))=0,其中p∈C([t0,∞),R),q∈C([t0,∞),R ),τ,σ∈R ,f(t,x)是定义在[t0, ∞)×R上的连续函数,讨论了上述方程的解的振动性,得出了该方程的一切解振动的充分条件。  相似文献   

16.
R称为左广义morphic环,若对每个a∈R,存在b,c∈R使得l(a)=Rb,l(b)=Rc。R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(a),l(b),l(c)表示R中元素a,b,c的左零化子。本文主要研究广义morphic环和伪morphic环的部分性质,通过例子说明某些结论的逆命题不成立。反例,设R是环,n≥0,R[x]/(xn+1)是左广义morphic环,则R是左广义morphic环,反之不成立。  相似文献   

17.
环R中的元素a称为quasipolar的,如果存在p∈R使得p~2=p∈comm~2(a),a+p∈U(R)并且有ap∈R~(qnil).环R是quasipolr的若环中每一个元素都是quasipolar的.文章证明了带有自同态σ的局部环R上的一类相对于σ的3×3阶矩阵环是quasipolar的.对于一个带有自同态σ的局部环R,若σ(J(R))?J(R),则T_3(R,σ)是quasipolar的当且仅当R是唯一bleached的.  相似文献   

18.
§1.引言本文考虑双曲型方程u_(xy)=f(x,y,u,u_x,u_y) (1)满足u(x,0)=σ(x) 0≤x≤a (2_1) σ(0)=τ(0) (2) u(0,y)=τ(y) 0≤y≤b (2_2)的特征問題的解的唯一性問題。如果在矩形R:0≤x≤a,0≤y≤b上存在非負的连續函数C_i(x,y)(i=1,2,3),对于R上每点(x,y)及任意的u,p,q,(?),(?),q滿足  相似文献   

19.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

20.
给出了ZP-内射维数以及ZP-平坦维数的定义,揭示了左ZP-内射维数l.zp.ID(R)=0及右ZP-平坦维数r.zp.FD(R)=0的环,即它们为非奇异环,并给出等价描述.讨论了环R的左ZP-内射维数l.zp.ID(R)≤n以及环R的右ZP-平坦维数r.zp.FD(R)≤n的等价刻画,证明了环R上的模类ZPI若满足单同态的上核封闭且l.zp.ID(R)< SymboleB@ ,则l.zp.ID(R)=r.zp.FD(R)=l.zp-id(RR),并证明ZP-内射左R-模的商模是ZP-内射模当且仅当模类ZPI满足单同态的上核封闭且l.zp.ID(R)≤1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号