首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 64 毫秒
1.
设F是一个群类.如果群G中存在一个正规子群T,使得HTG且(H∩T)HG/HG≤ZF∞(G/HG),则G的子群H称为G的Fsn-子群.利用Fsn-子群的概念得到Fsn-子群的性质以及可解群的一些新的判别准则,并对以前的结果进行推广.主要结论有:①设N是群G的非单位的正规子群,则N是可解群当且仅当G的每个不包含N的极大子群是G的Ssn-子群;②群G是可解群当且仅当G的每一个2-极大子群都是G的Ssn-子群;③设G是一个群,p是|G|的最小素因子,P是G的某个Sylowp-子群,则G是可解群当且仅当P的每个极大子群是G的Ssn-子群;④设G是一个群,p是|G|的最小素因子,P是G的某个Sylowp-子群.若G是A4-自由群且P的每个2-极大子群(如果存在)是G的Ssn-子群,则G是可解群.  相似文献   

2.
设G是有限群,K1(G)是G的最高阶元的阶,K2(G)是G的次高阶元的阶,K3(G)是G的第三高阶元的阶.证明了:每一个散在单群的自同构群G均可被G的阶和Ki(G)(其中i≤3)唯一刻画.  相似文献   

3.
设G1和G2是两个连通图,则G1和G2的Kronecker积G1×C2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,v1)(u2,v2):u1u2∈E(G1),v1v2∈E(G2)}.该文证明了如果G=G1×G2是平面图并且︱Gi︱≥3,那么G1和G2都是平面图;还完全确定了Pn×G2的平面性,n=3,4.  相似文献   

4.
设图G是n阶简单连通图.如果G的支配数为1,则G是上可嵌入的.如果G是2-边连通且G的支配数为2,则G是上可嵌入的.如果G是3-边连通且G的支配数为3,则G的最大亏格介于|(β(G)-2)/2|和|β(G)/2|之间,其中β(G)=|E(G)|-|V(G)|+1.论文得到了一些在控制数和边连通度条件下的最大亏格的界.  相似文献   

5.
设G是图,G的点颠覆策略S是G的一个点子集,它的闭邻域从G中删去,幸存子图记为G/S.G的点邻域完整度VNI(G)定义为:VNI(G)=mins V(G){|S| ω(G/S)},S是G的任意的点颠覆策略,ω(G/S)是G/S的最大连通分支的阶.刻画了点邻域完整度为1,2的树.  相似文献   

6.
设X是群G的非空子集,H是G的子群,如果H在G中有一个补充T使得H和T的所有Sylow子群X-置换,则称H在G中X-s-半置换.利用于群的X-s-半置换性得到下列结果:①设是包含所有超可解群的饱和群系,X是群G的可解正规子群,则G∈当且仅当存在H G使得G/H∈且H的每个Sylow子群的每个极大子群在G中X-s-半置换.②设是包含所有超可解群的饱和群系,X是群G的可解正规子群且H G.如果G/H∈且F(H)的每个Sylow子群的每个极大子群在G中X-s-半置换,则G∈③设X是群G的一个p-可解正规子群,p是|G|的最小素因子.如果G是A4-自由的,且存在H G使得G/H是p-幂零的并满足H的每个Sylow p-子群的每个2-极大子群在G中X-s-半置换,那么G是声p-幂零的.  相似文献   

7.
单圈图依次小Q-特征值排序   总被引:1,自引:1,他引:0  
n阶图G叫做单圈图,如果G是连通的,并且G的边数也是n.图G的无符号拉普拉斯矩阵定义为Q(G)=D(G)+A(G),其中D(G)是以G所有顶点的度为对角元的对角阵,A(G)是图G的邻接矩阵.Q(G)是一个实对称的半正定矩阵,设它的特征值为q1(G)≥q2(G)≥…≥qn(G)≥0.图G的依次小Q-特征值为qn-1(G),简记为k(G).主要研究单圈图的k(G),记阶数为n的所有连通的单圈图的集合为U(n),给出了当阶数n≥25时,U(n)中依次小Q-特征值为前3大的图.  相似文献   

8.
利用X-可换子群的概念,得到了有限群超可解的2个充分条件:(1)设G是可解群,X是G的子集且包含G的极小子群和极大子群。如果G的每个极大子群和G的sylow子群的每个极大子群在G中X-可换,那么G是超可解群;(2)设K■G,X是G的子集且包含G的p-子群。如果每个不包含K的G的极大子群在G中X-可换,那么K是超可解群。  相似文献   

9.
设G是有限群,t(G)为G的素图连通分支数.当t(G)≥2时,对K_3单群进行研究,得到了:(i)若G是有限群,M是除L_2(7),U_4(2)的K_3单群,则G■M当且仅当t(G)≥2且|G|=|M|;(ii)若G是有限群,M是L_2(7),U_4(2)单群,当t(G)≥2且|G|=|M|时,得到了群G的一些特征描述.  相似文献   

10.
强p-闭群     
设p为一素数,群G称为强p 闭群,如果G之子群Gp正规于G且商群G/Gp又是幂指数整除p 1的交换群.讨论了强p 闭群的性质并且得到了以下定理.若群G为强p 闭群,则如果p∈π(G),那么p为π(G)的最大素因子,如果p π(G),那么p>q( q∈π(G));如果G/Φp为强p 闭群,则Gp G且G/Gp是幂指数整除p 1的群;G是强p 闭群充要条件是G/Φp是强p 闭群且G′是p 群.  相似文献   

11.
在文献[1]的基础上,改变-些条件得出G为幂零群的若干充分条件。利用弱C-正规,s-正规与弱左Engle元之间的关系获得了下面几个定理:①G的每个素数阶元均为G的弱左Engle元;如果2∈φ(G),G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。②设N〈3G,G/N幂零,2∈π(G),若N的素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱C-正规,则G幂零。③如果G的每个素数阶元x为NG((x))的弱左Engle元,并且〈x〉和G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。④G的每个素数阶元均为G的弱左Engle元;如果2∈π(G),G的每个4阶循环子群均在G中S-正规,则G是幂零群。⑤如果G的每个素数阶元x为NG((x))的弱左Engle元,并且(x)和G的每个4阶循环子群均在G中弱S-正规,则G是幂零群。  相似文献   

12.
设H是有限群G的子群,称H为弱-可补的,如果存在G的子群T使得G=HT且H∩T≤,其中HG是由H所有在G中s-半置换子群生成的群.设G是有限群,p||G|.如果下列①和②之一成立,则G为p-幂零群:①(|G|,p-1)=1,G有Sylowp-子群P使得P的每个极小子群在G中弱-可补,且p=2时P与四元数群无关;②G是与A4无关的群,p=minπ(G),N■G使得G/N是p-幂零群,N的一个Sylowp-子群P的每个p2阶子群都是G的弱-可补子群.  相似文献   

13.
本文通过对任意群G的K-根K(G)的性质的研究,证明了X-群中几种常见的广义幂零性的等价性。  相似文献   

14.
利用弱c ##-正规子群研究有限群的幂零性,得出以下结论:①设G是群, H ≤G ,若H在G中弱c ##-正规且H ≤M ≤G ,则H在M中弱c ##-正规.②设π为素数集,H是G的π-子群, N为G的正规π′-子群,如果H在G中弱c ##-正规,则HN/N在G/N中弱c ##-正规.③设G的每个素数阶元均为G的弱左Engle元,若2∈π(G),且G的每个4阶循环子群均在G中弱##c -正规,则G是幂零群.④设N〈G , G/N为幂零的,且2∈π(G).若N的每个素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱c##-正规,则G是幂零群.  相似文献   

15.
图G的线图L( G)是指以G的边集E( G)为顶点集且L( G)的2个顶点邻接当且仅当它们在G中有公共顶点。 n次迭代线图Ln(G)递归地定义为L0(G)=G,Ln(G)=L(Ln-1(G))(n∈N={0,1,2,…}),其中L1( G)=L( G)并且假设Ln-1( G)非空,使得Ln( G)是哈密尔顿的最小整数n称为哈密尔顿指数,用h( G)表示。该文综述了(类)哈密尔顿指数的一些结果。  相似文献   

16.
设G为有限群,π为某素数集合。G的子群H称为G的π—S—拟正规子群,如果对每个P∈π,H与G的每个Sylow P—子群可换。G称为Bp群,如果NG(P)为P-幂零群蕴含G为P-幂零群,其中P∈SylpG。本文证明了G为Pp群,如果G满足下列条件之一:(1)G的Sylow P—子群P的每个极大子群为G的p—S—拟正规子群;(2)G的Sylow P—子群P的每个二次极大子群为G的p—S—拟正规子群。  相似文献   

17.
利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,H△G,使得G/H为P-幂零,PESylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为P-幂零,则G为P-幂零.②G是群,HqG使得G/H为P-幂零,P∈Sy/p(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-N;零的,则G为P-幂零.  相似文献   

18.
证明了(1)若图G是二部图,则当r≥s(χ’(G)-1)+2时,χr,s,1(G)=χr,0,0(G);(2)若图G是非二部图,则当r≥sχ’(G)/χ(G)-s+1且r不是s的倍数时,χr,s,1(G)=χr,0,0(G);(3)当Δ(G)≥2,χ’(G)=Δ(G),且s≥2r,r≥2t时,χr,s,t(G)=χ0,s,0(G);(4)当χ’(G)=Δ(G)+1且s-t≥r≥t时,χr,s,t(G)=χ0,s,0(G)。  相似文献   

19.
有限p—幂零群的一个新刻划   总被引:2,自引:0,他引:2  
推广了Itδ的结果,得到下述主要定理.定理1 设G是有限群,N(?)G,G/N p-幂零.那么(i)p为奇素数时,G p-幂零当且仅当N的p阶元均含于Z_(p∞)(G);(ii)p=2时,G 2-幂零当且仅当N的2.2~2阶元均含于Z_(2∞)(G).定理2 设G是有限群,N(?)G且G/N是幂零群.那么G是幂零群当且仅当N的素数阶元与2~2阶元均.含于Z_∞(G).此外,还证明了定理3 设G是有限群.则Z_(p∞)(G)=NI_(G)=∩{M|M为G的极大p-幂零子群}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号